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DE MINIMIS AND EQUITY IN RISK

ABSTRACT. Indices and orderings are developed for evaluating alternative strate-
gies in the management of risk. They reflect the goals of reducing individual and
collective risks, of increasing equity, and of assigning priority to the reduction and
to the equity of high risks. Individual risk is defined as the (random or non-random)
level of exposure to a danger. In particular the role of a lower negligibility level is
investigated. A class of indices is proposed which involves two parameters, a neg-
ligibility level and a parameter of inequality aversion, and several interpretations
of the indices are discussed. We provide a set of eight axioms which are necessary
and sufficient for this class of indices, and we present an approach to deal with
partial information on the parameters.

KEY WORDS: Risk management, social welfare axioms, Harsanyi’s view, partial
information, ordering of risk distributions.

1. INTRODUCTION

Many risks affect a large part of society: the threat of an earthquake
or a flood, of an epidemic disease or a new medical drug, the disposal
of chemical or nuclear waste, the air pollution caused by an industrial
production. To reduce such risks to the environment, public health
and safety, various strategies have been developed: e.g., moving
the production, constructing a higher smokestack, or installing a
filter system. Every such strategy distributes risk in a particular way
among the population. Under a given strategy, each individual incurs
a certain risk which may be sure or may depend on chance. Thus,
the strategy yields a distribution of risks – random or not – in the
population.

When we choose between alternative strategies for risk reduction,
social and ethical values become relevant. Goals have to be identified
which reflect certain ethical values about the distribution of risk in
society. For a broader introduction to these problems and for many
application examples, the reader is referred to Raiffa (1982).

Here we consider the risk of exposure to a danger, e.g. a toxic
air pollutant, where damage to individual health is a function of the
level of exposure, say the amount inhaled.
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In risk analysis the notion of risk is defined and made operational
in various ways; see Vlek and Stallen (1981). If a person is exposed
to risk at some level for sure, this level may be defined as the
individual risk, or a function of it, such as a resulting damage to
health or an equivalent monetary loss. If the level of exposure is
random, risk may be defined as its probability distribution or as a
parameter of this distribution: the probability of being exposed at all,
the maximum possible level of exposure, the expected exposure, the
variance or the upper semivariance of exposure (or of some function
of it), etcetera.

For the integration of social and ethical values, several principles
and goals have been formulated (Døderlein 1987, ICRP 1991, and
others). The first goal is always the reduction of the individual risks.
Døderlein (1987) advocates three other goals: risk democracy, risk-
cost effectiveness and risk-benefit equity. The three goals imply that
the sum of risks and the disparity of risks should both be minimized,
which usually conflict with each other. The International Commis-
sion on Radiological Protection (ICRP 1991) sets two additional
goals focusing on high individual risks: high risks should be reduced
and equalized with priority.

In this paper special indices and orderings are developed which
reflect these goals. Individual risk is defined as the level of exposure
– random or not – which a person receives. (Note that this use of the
word risk differs from common use in statistics.) In particular the
role of a lower negligibility level is investigated, a two-parameter
index is introduced, and an approach is proposed to deal with partial
information on the parameters.

For the social evaluation of alternative distributions of individual
risks we employ the following postulates.

� Impartiality: The evaluation of alternative strategies is based on
the distribution of individual risks alone. I.e., it is only relevant
that the individuals in the population receive certain risks, but it
is irrelevant which particular person receives which risk.

� De minimis: There is a threshold level such that all risk lev-
els below the threshold are irrelevant in evaluating alternative
strategies.
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� Individualism: If, with an alternative strategy, a person is better
off while the others remain unchanged, then this strategy is
preferred.

� Upper reduction: A strategy which reduces the risks of persons
at higher risk is preferred over one which yields the same total
reduction of lower risks.

� Equity proneness: If an alternative strategy yields a more equal
distribution of risks while the total risk remains unchanged, then
this strategy is preferred.

� Upper equity proneness: If a strategy increases the equity
among persons at higher risks and another strategy yields the
same increase of equity among persons at lower risks, then the
first strategy is preferred.

Upper equity proneness implies upper reduction; see e.g. Gollier
(1993). According to these postulates and more, eight axioms are
given in Section 3. From the axioms we will derive a two-parameter
class of real-valued indices to evaluate alternative strategies.

Let the population consist ofn persons receiving risks, which may
be sure or random. We restrict our notation to random risks because
non-random risks may be seen as a special case of random ones. Let
Xi denote the random level of exposure received by person i, and let
Fi be its probability distribution function, i = 1; . . . ; n. Consider the
following two-stage experiment: first, a person is drawn at random
and, second, his or her level of risk is observed. Let Y denote the
observed result, and F its distribution function, which we will call a
risk distribution function. In the case of non-random levels, F (y) is
the proportion of individuals who receive level x or less. In the case
of random levels, F (y) is the probability that a randomly chosen
individual is exposed to level y or less.

The social evaluation of different risk distributions F shall be
based on an evaluation index, ' : F 7! '(F ). The index represents
the preference between distributions by assigning a real number to
each of them. Of two given distributions, one is preferred over the
other if and only if the index of the first is lower than the index of
the second. We will construct such an index from general properties
of the underlying social preference order, or, if this is not possible,
we will search for an ordering in the set of all distribution functions
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on IR+ – not necessarily a complete one – which reflects the social
preference order by implying it.

Many evaluation indices are the expected value of a non-negative
function h which is defined on exposure levels,

'(F ) =

Z
[0;1[

h(y)dF (y):(1)

Equation (1) and the following analysis refer to general1 distribution
functions F . In the case of non-random risks xi, x1 6 x2 6 . . . 6 xn,
F amounts to the empirical probability distribution which gives
probability 1=n to every x1; x2; . . . ; xn, and the integral (1) becomes

'(F ) =
1
n

nX
i=1

h(xi):(2)

We offer three interpretations of the index'(F ), subjective expected
disutility, utilitarian social illfare, and total detriment.

First, '(F ) in Equations (1) and (2) is interpreted as a subjec-
tive expected disutility: A subject faces the empirical distribution
at x1; x2; . . . ; xn without knowing his or her position i in it, i.e.
not knowing the risk which will affect him or her. Then h(x) is
the subject’s individual evaluation of being exposed to the level x
where individual evaluation is meant either in the von Neumann–
Morgenstern sense (under risk, if there are objective probabilities)
or in the Savage sense (under uncertainty, if there are only subjective
ones). '(F ) in Equation (2) is the expected value of the individual
evaluation. This view has been introduced by Harsanyi (1953): The
subject observes the distribution ‘behind a veil’. ' is then called a
subjective expected illfare function which indicates the negative of
the expected social welfare in the population. Moreover, the subject
who evaluates (x1; x2; . . . ; xn) may think of a nonuniform distribu-
tion over the positions 1; 2; . . . ; n. If �i is his or her probability of
being in the i-th position then the evaluation becomes

'(F ) =

nX
i=1

�ih(xi);(3)

which is a specialization of Equation (1). More generally, if person
i receives a random level Xi for every i, Harsanyi’s subject faces
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the overall distribution function F =
P

i �iFi, and the subjective
evaluation becomes

'(F ) =

nX
i=1

�i

Z
[0;1[

h(y)dFi(y);(4)

which again is a special case of the index (1).
Second, a different interpretation, utilitarian social illfare, can

be given to Equation (2) when all levels are non-random; see Kolm
(1969), Atkinson (1970), and others. The negative of h is consid-
ered as an individual welfare function, which is the same for every
individual i, and a proper utilitarian axiom is imposed on social wel-
fare, e.g. the axiom of ‘nonaltruism’ in Section 3. Then the social
welfare is represented by the sum of all individual welfares, and for
its negative we get (2). Equation (3) arises under a modified utilitar-
ian axiom, when persons in different positions i are given different
welfare weights�i which reflect their ‘importance’ to social welfare.

The third interpretation of Equations (1) and (2), total detriment,
is given in the concluding section.

A specific feature of most risk reduction policies is the use of a
negligibility level of exposure. The analysis then focuses on expo-
sures xwhich exceed this level, say b, b > 0. In comparing alternative
risk distributions, their left tails up to x = b are considered as negli-
gible. This neglect may be based on one or several of the following
reasons:

� the conviction that exposure levels below b are not harmful,
� the fact that they add only insignificantly to existing (and readily

accepted) exposure levels,
� the lack of a valid model which quantifies the detriment caused

by low levels of exposure,
� the practical difficulty or impossibility of measuring levels of

exposure below b.

In practical applications, while most experts readily accept the exis-
tence of some negligibility level, they often dissent about its numer-
ical value. We shall therefore argue that the de minimis level is
included in some interval on which the experts agree and that the
evaluation be based on this interval instead of a single value.

The next section presents a specification for the function h, and
hence the index ', which depends on two parameters: negligibility
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Fig. 1. The individual evaluation function eh for different parameters a:

level and degree of growth. In Section 3 we formulate axioms which
reflect the postulates listed above (and more), and we show that they
are necessary and sufficient for the proposed class of indices. In
Section 4 we assume that we have only partial information about
the possible values of the two parameters, viz. that they are con-
tained in some known intervals, and we derive decision rules for the
comparison of alternative strategies in risk management which are
based on the partial information available. Section 5 concludes the
paper by relating our approach to cost considerations and sketching
its practical implementation in a stepwise decision procedure.

2. A TWO-PARAMETER INDEX

We start with a particular specification of h. Consider (see Figure 1)

eh(x) = �
h0(x) if 0 6 x 6 b,
h0(b) + (x� b)a if x > b,

(5)

where a and b are parameters > 0, and h0(x); 0 6 x 6 b; is some
function having its maximum at b. An axiomatic treatment of this
specification and the resulting index ' is postponed to Section 3.
There we shall show (Theorem 1) that this special choice of h is a
consequence of seven axioms, which state the above postulates in a
precise way, plus a scaling axiom.
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Since h0 in Equation (5) is unknown, we substitute h0(x) by its
upper bound h0(b), 0 6 x 6 b, and get

h(x) =

�
h0(b) if 0 6 x 6 b,
h0(b) + (x� b)a if x > b .

(6)

This results in a ‘conservative’ evaluation of every single distribu-
tion. It implies that in comparing distributions the tails below b are
irrelevant, which reflects the ‘de minimis’ postulate.

With (6), the evaluation index (1) becomes

'(F ) = h0(b) +

Z
]b;1[

(y � b)adF (y):(7)

Basically, '(F ) is a truncated upper-b moment.
Let two distribution functions, F and G, be given. If we use

(7) as an evaluation index, we prefer distribution G not less than
distribution F if and only if '(F ) > '(G), i.e., if and only ifZ

]b;1[

(y � b)adF (y) >

Z
]b;1[

(y � b)adG(y)(8)

holds. The criterion does not depend on the values of h0, which we
do not know, but only on the two distributions and the parameters a
and b.

In the sequel we will analyse the criterion (8) for arbitrary pairs
of distribution functions F and G. In the empirical distribution case,
the criterion (8) reads

nX
i=i(b)

(xi � b)a >
nX

j=j(b)

(yj � b)a

where i(b) and j(b) are uniquely determined by xi(b)�1 6 b < xi(b)
and yj(b)�1 6 b < yj(b). The index (7) can be seen as a weighted
sum of excess risks, i.e. differences between realized risks and the
negligibility level,

'(F ) = h0(b) +
nX

i=i(b)

wi(xi � b);(9)

where the weights are wi =
1
n
(xi � b)a�1: A parameter value a = 1

means that the excess risks are equally weighted, while a > 1 means
increasing weights. When a = 2, the excess risks are weighted by

the31394.tex; 18/04/1997; 11:27; v.5; p.7



222 KARL MOSLER

themselves. In general, the parameter a indicates the increase in
weight when excess risks grow larger. A parameter value a = 0
corresponds to the index which is not sensitive to the size of excess
risks but only counts the number of persons receiving risks above
the negligibility level.

In the non-random levels case, the parameter a indicates the
degree of inequity aversion the subject possesses; see Section 3
for details. In the case of random levels, a describes the degree of
aversion to the inequality of risk levels which arises in the distribu-
tion actually taken by the subject as well as which occurs between
individuals in the population.

A principal problem in applying the criterion (8) – or a criterion
with a similar function h – consists in the interpretation and the prac-
tical assessment of the unknown parameters. A partial information
approach to this, which lowers the assessment burden, is given in
Section 4.

3. AN AXIOMATIC TREATMENT

In this section we restrict our analysis to non-random risks. We
provide a set of axioms for the comparison of risk vectors with
respect to social illfare and derive the index (7) from them. The
axioms refer to the second interpretation, utilitarian social illfare,
which was given in the introduction, and reflect the postulates listed
there.

A distribution of risk among some number n of persons is des-
cribed by a risk vector x = (x1; x2; . . . ; xn) in IRn

+
. The set of all such

risk vectors is D =
S
1

n=1 IRn
+

. We will investigate social evaluation
functions ' : D ! IR+ and characterize them by proper axioms on
the social preference among risk vectors.

Our primitive is a social preference order among risk vectors;
it is assumed to be a weak order (transitive and complete) on D

which is continuous and essential in at least three components of
the risk vectors. A function ' : D ! IR+ is said to represent the
social preference if the following holds: For every x and y 2 D,
'(x) 6 '(y) if and only if x is not less preferred thany. We start with
two axioms regarding impartiality and independence of population
size.
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(A 1) Impartiality (Symmetry): If two risk vectors in IRn
+

differ
only in that two persons exchange their risks, the risk vectors
are equally preferred.

(A 2) Independence of population size (Replication invariance):
If a risk vector x = (x1; x2; . . . ; xn) 2 IRn

+
is compared with its

k-replication, i.e. with the risk vector x(k) = (x1; . . . ; x1; x2; . . . ;
x2; . . . ; xn; . . . ; xn) 2 IRkn

+
, then both are equally preferred.

A 1 implies that, given a population size n, the comparison of
two risk vectors is based on the empirical distributions alone, and
A 2 extends this to populations of different size. The next axiom
captures the idea that a lower negligibility level exists.

(A 3) De minimis (Independence of low levels): There is a level
b such that two risk vectors in IRn

+
are equally preferred if they

differ only in components whose values are in [0; b].

From A 3 it follows that, for any social evaluation function ' : D!

IR+, its behaviour outside the set D� =
S
1

n=1]b;1[n is irrelevant.
In the sequel, therefore, only the restriction '� of ' to D� has to be
characterized and constructed. Given x 2 IRn

+
, let n� be the number

of components xi > b, and x� = (x�1; . . . ; x�n�) the vector of these
components.

(A 4) Individualism (Monotonicity): If two risk vectors in IRn
+

differ only in the risk which one person receives and if these
risk levels are above b, then that risk vector is preferred which
yields the lower risk to the person.

This last axiom implies that '� is strictly decreasing (in each argu-
ment). We continue with an axiom which we call nonaltruism
because, like individualism, it has a taste of lacking altruism: risk
changes which concern two persons only are evaluated no matter
how well or badly the remaining persons are off.

(A 5) Nonaltruism (Separability): If two alternative risk vectors
in IRn

+
differ in the risks of only two persons then the preference

between them does not depend on the levels of the risks which
the remaining persons receive.
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In other words, A 5 says that the conditional social preference of
the levels of any two persons is independent of the condition, namely
the fixed risk levels of the others.

PROPOSITION 1. Axioms A 1 to A 5 imply that ' represents the
social preference on D if and only if

'(x) = g

�
h0(b) +

1
n�

n�X
i=1

h(x�i )

�
; x 2 D;(10)

with some continuous functions g and h : IR+ ! IR+, g strictly
increasing and h strictly increasing on [b;1[.

Proof. From results of Debreu (1960) and others (see Wakker
(1989)) it is well known that the restriction of the preference to D�

has the representation '�,

'�(x�) = g�
� 1
n�

n�X
i=1

h�(x�i )

�
; x

�
2 D�;(11)

where g� : IR+ ! IR+ and h� :]b;1[! IR+ are strictly increasing
continuous functions. By setting '(x) = '�(x�), g(�) = g�(h0(b)+
�), and h(�) = h�(�) if � > b, h(�) arbitrary otherwise, we get the
representation (10).

Of course, given some individual illfare function h, the index (10)
yields the same social preference order for every choice of g. Without
loss of generality, we may take the identity function for g, and thus

'(x) = h0(b) +
1
n�

n�X
i=1

h(x�i ):(12)

We continue with two axioms on preference for equity: equity prone-
ness and upper equity proneness. They yield further qualitative spec-
ifications of h, namely that the restriction of h to ]b;1[ is strictly
concave and has a derivative which is strictly convex.

(A 6) Equity proneness: If two risk vectors in IRn
+

differ only in
that two persons receive risks �1 and �2 with the first and risks
�1 + " and �2 � " with the second risk vector, and there holds
b 6 �1 < �1 + " < �2 � " < �2, then the second risk vector is
preferred.
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(A 7) Upper equity proneness: If two risk vectors in IRn
+

have the
same variance and differ only in that four persons receive risks
�1 < �2 < �3 < �4 with the first and risks �1 � �, �2 + �, �3 + ",
�4 � " with the second risk vector and there holds b 6 �1 � � <
�1 < �2 < �2 + � < �3 < �3 + " < �4 � "; then the second risk
vector is preferred.

Note that the empirical distributions of the two risk vectors in
Axiom A 6 have equal expectations; the same holds in A 7. In
A 7 the equal variance assumption is tantamount to saying that
"(�2 � �1 + ") = �(�4 � �3 � �).

In Axiom A 6, the second risk vector is obtained from the first
one by a so called regressive transfer. A regressive transfer increases
equity among the individuals. The opposite of a regressive transfer is
called a progressive transfer; it decreases equity. In Axiom A 7, two
transfers are considered simultaneously, a regressive one between
persons at high risks and a progressive one having the same size
between persons at lower risks. The axiom states that a pair of
transfers like these results in a socially preferred distribution. The
axioms are well-known in social welfare theory; see e.g. Foster and
Shorrocks (1987).

A 6 (equity proneness) implies that '� is a strictly Schur-convex
function on D�. For Schur-convexity of social evaluation functions,
see e.g. Mosler (1994). If '� has the form (11), A 6 is equivalent
to h� being strictly convex. Further A 7 (upper equity proneness) is
fulfilled if and only if h� has a strictly increasing second derivative.
We have shown the following proposition:

PROPOSITION 2. Axioms A 1 to A 7 imply that ' represents
the social preference on D if and only if (10) holds with g strictly
increasing and continuous, h constant on [0; b], h strictly increasing
and continuous on ]b;1[ and, in addition, h strictly concave with a
strictly convex derivative on ]b;1[.

The final axiom, A 8, concerns the scaling of the individual risks
compared with a properly defined mean risk. Given a risk vector
x 2 D�, x � b � 1 is the excess risk vector; here 1 denotes a vector
of ones. The h-mean excess risk of x 2 D is defined by

�h(x) = h�1
� 1
n�

n�X
i=1

h(x�i )

�
� b:
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�h(x) indicates the constant excess risk level which, given to every
person, is equally preferred as the risk vectorx. Axiom A 8 postulates
that the h-mean excess risk is measured on the same scale as the
individual excess risks:

(A 8) Scale (Homogeneity): For x 2 D�, the h-mean excess risk
is first degree homogeneous in the excess risk vector, i.e.

�h(b � 1+ �(x� b � 1)) = ��h(x) for every � > 0:

When A 8 is added to the representation (12) of the index, then either

h(�) = �(� � b)a + �(13)

or

h(�) = � ln(� � b) + �(14)

must hold with some � > 0; � > 0. As the preference between risk
vectors does not depend on the choice of � and �, let � = 1 and
� = 0. A 3 implies that a > 0, A 5 that a > 1, and A 6 that a > 2.
With the full set of axioms we finally get:

THEOREM 1. Axioms A 1 to A 8 imply that ' is a representation
of the social preference if and only if

'(x) = h0(b)+
1
n�

n�X
i=1

(x�i�b)
a; x 2 D; with a > 2; or(15)

'(x) = h0(b) +
1
n�

n�X
i=1

ln(x�i � b); x 2 D;(16)

or a strictly increasing transform of (15) or (16).
If A 7 (A 7 and A 8) are dropped, we have the same representations

with a > 1 (respectively a > 0) in (15).
On the reverse, the representations (15) and (16) imply the axioms

A 1 to A 8.

The necessity of the axioms is easily verified. Equation (15) is the
index (7) for empirical distributions.
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4. PARTIAL INFORMATION ON THE PARAMETERS

In this section we return to the general case of random risks. We
assume that there is no unique value of the parameters a and b in the
criterion (8), but rather some partial information on their possible
values: a is contained in a set A, and b in a set B, A and B being
known. This may occur with a single evaluator who has a limited
knowledge about a and b or with a multitude of evaluators who
disagree about the correct values.

Consider a given set of alternative strategies each of which results
in a distributionF . From this set, a choice should be made according
to the criterion (8). However, as we have only partial information on
the parameters, Equation (7) does not assign a single number to a
given distribution function. Therefore we cannot apply the criterion
(8) as it stands. What can be done in a first step of the analysis is
to remove those strategies from the set of alternatives which are
dominated by a remaining alternative in the following sense.

DEFINITION. A distribution function F is (A;B)-dominated by
another distribution function G, in symbols F 6A;B G, if condition
(8) holds for every choice of the parameters a in A and b in B, i.e., if
G is not less preferred than F for every a and b under consideration.

It is obvious from the definition that6A;B is a reflexive and transitive
relation in the set of all distribution functions on the nonnegative
reals, hence a preorder. Of course, the preorder is not complete such
that applying it to a given set of alternatives will result in an efficient
subset of nondominated alternatives which in general contains more
than one element.

As all feasible a are nonnegative, the integrands in (8) are non-
decreasing functions. It follows that the preorder is consistent with
first degree stochastic dominance (FSD), i.e., if F dominates G in
FSD then F 6A;B G for arbitrary sets A and B. If A � [1;1[,
the integrands are also convex and the preorder is consistent with
second degree stochastic dominance in the increasing convex sense
(SSDiconv); further, if A � [2;1[, the preorder is consistent with
third degree stochastic dominance (TSDiconv).2 The following propo-
sition collects the results.
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PROPOSITION 3. Let A;B � IR+.
(i) If F dominates G in FSD then F 6A;B G.
(ii) If A � [1;1[ and F dominates G in SSDiconv then F 6A;B G.
(iii) If A � [2;1[ and F dominates G in TSDiconv then F 6A;B G.

In case (ii) it follows that the preorder is in accordance with Goal No.
2 of the ICRP which postulates that the dispersion of the individual
exposure levels should be reduced (Schneider et al. 1993); it follows
as well that the highest individual levels of exposure are reduced with
priority, which is one possible interpretation of Goal No. 3 of the
ICRP; see Gollier (1993). In case (iii), the preorder is consistent with
third degree stochastic dominance, which is another interpretation
of Goal No. 3; see Schneider et al. (1993).

Next we discuss cases where a is uniquely known but b only
known to be in an interval. We start with the two special cases
A = f0g and A = f1g.

PROPOSITION 4. F 6f0g;B G if and only if 1� F (b) > 1�G(b)
for all b 2 B holds.

Proof. When a = 0, (8) becomes
R
]b;1[

dF (x)�
R
]b;1[

dG(x) > 0;

i.e., 1� F (b) > 1�G(b).

Figure 2 gives an example of two distributions F and G where
F >f0g;B G and B is an interval.

PROPOSITION 5. F 6f1g;B G if and only if
R
1

b (1 � F (x))dx >R
1

b (1�G(x))dx for all b 2 B holds.
Proof. See the general case in Proposition 6..

REMARKS. (1) The conditions in Propositions 4. and 5. can be
easily checked for given distribution functions F and G.

(2) Consider B = IR+ in the the two propositions. It is obvi-
ous that (f0g; IR+)-dominance coincides with first degree stochastic
dominance (FSD), and that (f1g; IR+)-dominance coincides with
second degree stochastic dominance (SSDiconv). The latter is the
same as the generalized Lorenz order; see e.g. Mosler (1994). When
the expected values of F and G are equal, we get the usual Lorenz
order.

Proposition 6 will characterize the (fag; B)-dominance relation
for all integer values of parameter a and arbitrary B � IR+. For this,
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Fig. 2. B = [b1; b2]; F >f0g;B G.

we introduce the notation

F 1(x) = 1� F (x); F a+1(x) =

Z
1

x
F a(y)dy;

x 2 IR+; a = 1; 2; 3; . . . :

PROPOSITION 6. Let a 2 f0; 1; 2; . . .g.
Then F 6fag;B G if and only if F a+1(b) > Ga+1(b) for all b 2 B .

Proof. See the Appendix.

REMARKS. (1) Again, when B = IR+, (fag; IR+)-dominance is
equivalent to stochastic dominance of degree a + 1, for every a 2
f0; 1; 2; . . .g. See Rolski (1976) for stochastic dominance of arbitrary
integer degree.

(2) Also for non-integer values of a, (fag; IR+)-dominance is
equivalent to stochastic dominance of degree a+1. Stochastic dom-
inance relations of non-integer degree have been investigated by
Fishburn (1976, 1980).

(3) For non-integer a there exists no result similar to Proposition
6.

5. CONCLUSIONS

The above analysis has developed a class of two-parameter indices
for evaluating and comparing alternative strategies in risk manage-
ment. Their relations to the postulates of anonymity, de minimis,
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individualism, equity proneness and upper equity proneness have
been investigated, and decision rules under partial information have
been provided.

For non-random individual risks, we have derived the indices
from axioms on the social preference order. This refers to the inter-
pretation of the index as a utilitarian social illfare function. For the
other interpretation as a subjective expected disutility, a similar set
of axioms can be provided along the lines of the Arrow–Pratt theory
of decision under risk.

We should mention that the index (1) in connection with (6)
allows for a third interpretation, total detriment caused by the risk
distribution F , as follows. h(x) is understood as the detriment of
exposure level x per unit of the population, and b is a level below
which no detriment is taken into account; adenotes a shape parameter
indicating the velocity of detriment growth beyond level b, and h0 is
the (unknown) detriment function at low levels. h0 is assumed to be
nondecreasing, or at least bounded by its value at b. Then'(F ) is the
total detriment in the population, measured in physical or monetary
units, such as the total reduction in expected remaining life or a
monetary value assigned to this reduction.

In particular, the specification of eh in Equation (5) is similar to a
customary specification of the average cost of detriment caused by
a risk level x, the so called monetary man-sievert multiplied by the
level of risk: bh(x) = �0x if x 6 b, bh(x) = �0(x=b)

a if x > b; see
Schneider et al. (1993).

Comparing alternative strategies with respect to total detriment
implies that the three postulates of anonymity, de minimis and indi-
vidualism are satisfied, and, in addition a postulate of risk-cost effec-
tiveness. However, the two equity postulates are neglected.

As our aim is to include ‘equity’ and ‘upper equity’ as goals,
we have used a different approach in this paper. We have based the
analysis on a subjective evaluation index which can be regarded as
a social illfare index and which reflects the postulates of equity and
upper equity proneness.

The problem remains how cost considerations can enter this anal-
ysis. Any benefit-cost analysis affords that the benefit is measured on
an interval scale. But, other than monetary or physical loss, the above
subjective evaluation and, in general, social welfare are essentially
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ordinal concepts. In fact, when integrating a social welfare approach
in a decision between alternative risk management strategies, we
end up with a two-criteria decision problem, the criteria being costs
and the value of the social welfare index. The literature on multi-
criteria decision analysis offers a rich methodology to cope with
such problems; see e.g. von Winterfeldt and Edwards (1986).

For the problem at hand we propose the following practical
approach which is a decision process in steps:

1. Generating the set of all possible alternatives.
2. Removing those alternatives from the set which are either not

technically feasible or create costs beyond ’reasonable limits’.
3. Performing the above social welfare evaluation under partial

information, which results in a set of non-dominated alternatives.
4. Choosing from this set of alternatives according to their costs and

– possibly – according to additional cost-benefit considerations.
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APPENDIX

Proof of Proposition 6. For a = 0 see Proposition 4. For a > 1,
the proof follows a standard argument of the stochastic dominance
literature; see e.g. Fishburn (1976): Observe from the definition of
F a that F a(1) = 0 and d

dx
F a+1(x) = �F a(x), for every a 2 IN.

By repeated partial integration we deriveZ
]b;1[

(y � b)adF (y) = �

�
(y � b)a(1� F (y))

�1
b

+

+ a

Z
1

b
(y � b)a�1

(1� F (y))dy

the31394.tex; 18/04/1997; 11:27; v.5; p.17



232 KARL MOSLER

= �a

�
(y � b)a�1F 2(y)

�1
b

+ a(a� 1)
Z
1

b
(y � b)a�2F 2(y)dy

= . . .

= a(a� 1) � . . . � 1 �
Z
1

b
F a(x)dx

= a ! F a+1(b)

where all boundary terms are equal to zero. Similarly we getZ
]b;1[

(x� b)adG(x) = a ! Ga+1(b):

Hence the inequality (8) is fulfilled if and only if

F a+1(b) > Ga+1(b):

When b varies in B, the proposition follows.

NOTES

1 As h is nonnegative, the integral always exists but may equal plus infinity.
2 We say thatF dominatesG inSSDiconv if

R
IR+

h(y)dF (y) >
R

IR+
h(y)dG(y)

for every real function h which is nonnegative, nondecreasing and convex; F
dominates G in TSDiconv if the same inequality holds for every h which has, in
addition, a nondecreasing second derivative.

REFERENCES

Atkinson, A.B.: 1970, ‘On the measurement of inequality’, J. of Economic Theory
2, 244–263.

Debreu, G.: 1960, ‘Topological methods in cardinal utility theory’, in Mathemat-
ical Models in the Social Sciences, K.J. Arrow, S. Karlin, and P. Suppes (eds.),
16–26. Stanford: Stanford University Press.

Døderlein, J.M.: 1987, ‘Introduction’, in Risk and Decisions, W.T. Singleton and
J. Hovden (eds.), 1–8. Chichester: J. Wiley.

Fishburn, P.C.: 1976, ‘Continua of stochastic dominance relations for bounded
probability distributions’, Journal of Mathematical Economics 3, 295–311.

Fishburn, P.C.: 1980, ‘Continua of stochastic dominance relations for unbounded
probability distributions’, Journal of Mathematical Economics 7, 271–285.

Foster, J.E., and Shorrocks A.F.: 1987, ‘Transfer sensitive inequality measures’,
Review of Economic Studies 54, 485–497.

the31394.tex; 18/04/1997; 11:27; v.5; p.18



DE MINIMIS AND EQUITY IN RISK 233

Gollier, C.: 1993, Comment on Working Paper No. 2 . Proceedings of the CEC
Workshop, June 1993. CEPN, Report No. 217, pp. 51–54.

Harsanyi, J.C.: 1953, ‘Cardinal utility in welfare economics and in the theory of
risk-taking’, Journal of Political Economy 61, 434–435.

International Commission on Radiological Protection [ICRP]: 1991, 1990 Recom-
mendations of the ICRP. ICRP Publication 60. Oxford and New York: Pergamon
Press.

Kolm, S.C.: 1969, ‘The optimal production of social justice’, in Public Economics,
J. Marjolis and H. Guitton, (eds.), 145–200. New York: Macmillan.

Mosler, K.: 1994, ‘Majorization in economic disparity measures’, Linear Algebra
and Its Applications 199, 91–114.

Raiffa, H.: 1982, ‘Science and policy: their separation and integration in risk
decisions’, in Risk Analysis Controversy, H.C. Kunreuther and E.V. Ley (eds.),
27–37. Berlin: Springer-Verlag.

Rolski, T.: 1976, ‘Order Relations in the Set of Probability Distribution Func-
tions and Their Applications in Queueing Theory’, Warszawa, Dissertationes
Mathematicae No. 132.

Schneider, T., Schieber, C., and Eeckhoudt, L.: 1993, ‘Equity and Radiological
Risk Management,’ Proceedings of the CEC Workshop, June 1993. CEPN,
Report No. 217, pp 36–50.

Vlek, C., and Stallen P.J.: 1981, ‘Judging risks and benefits in the small and in the
large’, Organizational Behaviour and Human Performance 38, 235–271.

von Winterfeldt, D., and Edwards, W.: 1986, Decision Analysis and Behavioral
Research. Cambridge: University Press.

Wakker, P.: 1989, Additive Representations of Preferences, Dordrecht: Kluwer.

Seminar für Wirtschafts- und Sozialstatistik,
Universität zu Köln,
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