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Multivariate Gini Indices

G. A. Koshevoy

C.E.M.I., Moscow, Russia

and
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Two extensions of the univariate Gini index are considered: RD , based on expec-
ted distance between two independent vectors from the same distribution with finite
mean + # Rd; and RV , related to the expected volume of the simplex formed from
d+1 independent such vectors. A new characterization of RD as proportional to a
univariate Gini index for a particular linear combination of attributes relates it to
the Lorenz zonoid. The Lorenz zonoid was suggested as a multivariate generaliza-
tion of the Lorenz curve. RV is, up to scaling, the volume of the Lorenz zonoid plus
a unit cube of full dimension. When d=1, both RD and RV equal twice the area
between the usual Lorenz curve and the line of zero disparity. When d>1, they are
different, but inherit properties of the univariate Gini index and are related via the
Lorenz zonoid: RD is proportional to the average of the areas of some two-dimen-
sioned projections of the lift zonoid, while RV is the average of the volumes of
projections of the Lorenz zonoid over all coordinate subspaces. � 1997 Academic Press

1. INTRODUCTION

To measure the disparity of a probability distribution, the Gini mean dif-
ference and its scale invariant version, the Gini index, are most widely
used. The Gini index is closely connected to the Lorenz curve. It amounts
to twice the area between the Lorenz curve and the diagonal of the unit
square; in other words, it equals the area between the Lorenz curve and its
dual. By this, the Gini index is consistent with the Lorenz order: If one
Lorenz curve lies below another the Gini index of the first distribution is
strictly larger than the index of the second one. Moreover, the Gini index
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is continuous and scale invariant and, with nonnegative data, has sharp
upper bound one.

In this paper we investigate extensions of the Gini mean difference and
the Gini index to measure the disparity of a population with respect to
several attributes s=1, ..., d. The Gini mean difference of a univariate dis-
tribution F is defined as half the expected distance between two inde-
pendent random variables that both follow the law F. Our first notion is
an immediate extension of this. Let A=[ais] be an n_d data matrix, and
ai its ith row. FA denotes the d-variate empirical distribution that puts
equal mass 1�n to each ai . We define

MD(FA)=
1

2n2d
:
n

i=1

:
n

j=1
\ :

d

s=1

(ais&ajs)
2+

1�2

(1)

and call MD the distance�Gini mean difference.
The Lorenz zonoid of a univariate distribution is the convex set between

the Lorenz curve and its dual. Thus, the Gini index equals the area of this
zonoid. The generalized Lorenz curve and its dual form the boundary of
another convex set, the lift zonoid, and the Gini mean difference amounts
to its area.

The Lorenz zonoid of a d-variate distribution was introduced in
Koshevoy and Mosler (1996). It is a convex set in Rd+1. The Lorenz
zonoid is the scale invariant version of the lift zonoid. For a detailed
investigation of these zonoids the reader is urged to consult our two pre-
vious articles (Koshevoy and Mosler, 1995, 1996).

Our second notion, MV , is based on the ``expanded'' volume of the lift
zonoid and is named the volume�Gini mean difference. It is defined

MV(FA)=
1

2d&1
:
d

s=1

1
ns+1 :

1�i1< } } } <is+1�n

:
1�r1< } } } <rs�d

|det(1, Ar1, ..., rs
i1, ..., is+1

)|,

(2)

where 1 is a column of ones, and Ar1, ..., rs
i1, ..., is+1

is the matrix obtained from the
rows i1 , ..., is+1 and the columns r1 , ..., rs of the data matrix.

For univariate data the Gini index equals the Gini mean difference of the
relative data, which are the original data ``scaled down'' by their mean. For
d-variate data we define the distance�Gini index and the volume�Gini
index by

RD(FA)=MD(F� A) and RV(FA)=MV(F� A), (3)

respectively, where FA is componentwise scaled down to F� A by its mean
vector; see Section 3.
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Every d-variate Gini index should have at least the following properties:
be equal to the usual Gini index in case d=1, increase with a proper multi-
variate extension of the Lorenz order, be scale invariant and continuous, be
positive unless the distribution is one-point, and have sharp upper bound
one if the data are nonnegative. This and more is shown for our two
notions. They are also investigated for general d-variate probability dis-
tributions with finite means.

The body of the paper starts with a review of basic features of the
univariate Gini index and Gini mean difference, focusing on empirical dis-
tributions (Section 2). For univariate distributions, the Gini mean dif-
ference increases with the dilation order, and the Gini index increases with
the Lorenz order, which we call relative dilation because it amounts to
dilation of the relative distributions. Of course, dilation implies relative
dilation.

We consider several extensions of dilation to the multivariate case
(Section 3). The first is classical d-variate dilation, which means that a random
vector X equals another random vector Y plus ``noise.'' The second, direc-
tional dilation says that, in each direction p, the projection pX T equals the
projection pYT plus some ``noise'' depending on p. X is a directional dila-
tion of Y if and only if the lift zonoid of the distribution of X includes that
of the distribution of Y (Koshevoy and Mosler, 1995). Absolute and
relative versions of these dilations are considered in Section 3. We show in
Section 6 that MD and MV increase with absolute dilation as well as direc-
tional absolute dilation. Similarly, both RD and RV increase with relative
dilation and directional relative dilation.

Although MD and RD are obvious extensions of the univariate notions,
most of their properties have not been explored so far. In Section 4 the dis-
tance�Gini index is shown to inherit the main properties of the univariate
index plus the ceteris paribus property of being proportional to the index
of the nondegenerate marginals. In particular, for nonnegative data, RD is
bounded by one, and the bound is tight. A surface formula due to
Helgason (1980) is used to express RD(FX) as proportional to the average
over all directions p of RD(FpXT). It follows from the mean value theorem
that, for some specific direction p~ depending on FX , RD(FX) equals the
univariate Gini index of Fp~ XT times a constant which does not depend on
FX . Using this representation we prove that RD is consistent with relative
dilation as well as directional relative dilation. The mean difference MD is
investigated in parallel.

Section 5 begins with a theorem relating the volume of the lift zonoid to
the expectation of the absolute value of a random determinant. The
volume�Gini index is then formed from the volume of the Lorenz zonoid
``expanded'' by the unit cube. This index is characterized as the average
volume of the Lorenz zonoids corresponding to all 2d&1 marginal
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distributions. The volume�Gini index is shown to inherit the properties of
the univariate index, to respect the two basic dilation orderings as well as
their relative versions, plus the ceteris paribus property. Similar properties
are derived for the mean difference MV.

We also establish connections of MD(F ) and MV(F ) with the lift zonoid
of F : MD(F) is proportionate to the average area of certain two-dimen-
sional projections of the lift zonoid (Remark 5.2). MV(F ) is an average
volume of projections of the lift zonoid on coordinate planes (Remark 5.3).

Finally, a well known distance-based index is described in terms of L1

distance, instead of Euclidean distance. All three indices are applied to
Fisher's Iris data to corroborate the theory that Iris versicolor is a hybrid
of Iris setosa and Iris virginica, in that it shows an intermediate level of
diversity from the other two species using each of the indices.

There are several attempts in the literature to define a multivariate Gini
mean difference or Gini index. Arnold (1987) proposes RD(FA) up to a
constant and poses the question of which constant makes it bounded by
one. Wilks (1960) introduces the volume of a convex body associated with
F. Oja (1983) shows that the Wilks index is the expected volume of a sim-
plex generated by d+1 random vertices that are independent and identi-
cally distributed according to F ; see also Giovagnoli and Wynn (1995). In
our framework, the Wilks index amounts to d+1 times the volume of the
lift zonoid (Theorem 5.1). Torgersen (1991) uses, as a multivariate Gini
mean difference, the volume of the zonoid of the distribution, that is, the
projection of its lift zonoid on the last d coordinates. For a one-point
distribution, both the Wilks�Oja and the Torgersen indices vanish. But
also for many other distributions they are zero, which appears to be un-
satisfactory. Our notion MV(F ) avoids this drawback; it vanishes if and
only if F is a one-point distribution. In addition, we provide the
correct scaling factor which makes, for nonnegative data, RV vary between
0 and 1.

Another multivariate Gini index, associated with a concentration surface,
has been introduced by Taguchi (1981). For the relations between
Taguchi's concentration surface and the lift zonoid, see Koshevoy and
Mosler (1996).

The paper is organized as follows: Some properties of the usual
univariate Gini index are surveyed in Section 2. Section 3 presents the
definitions of six multivariate dilation orderings and of the lift zonoid and
the Lorenz zonoid of a d-variate distribution. Section 4 is about the
multivariate distance�Gini index and its properties. The multivariate
volume�Gini index is introduced and analyzed in Section 5. In Section 6
we demonstrate that our Gini indices are increasing with multivariate
dilations. Section 7 includes the illustrative application to Fisher's Iris
data.
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Notation. Rk(Rk
+) is the k-dimensional Euclidean space of row vectors

(nonnegative row vectors). In Rk, xT is the transpose of a vector x, � the
usual componentwise ordering, and Sk&1 the unit sphere. 0 stands for the
origin, and x, y for the segment between x and y in Rk. [a1 , ..., al] denotes
the l_k matrix with rows a1 , ..., al # Rk. For D and E in Rk,
D�E=[u : u=x+ y, x # D, y # E] is the Minkowski sum, and Vk(D) is
the k-dimensional volume of D.

2. THE UNIVARIATE GINI INDEX

We shortly survey the Gini mean difference and the Gini index of a
univariate distribution. Let F : R � [0, 1] be a given probability distribu-
tion function on R that has a finite expectation +(F)=��

&� x dF(x){0.

Definition 2.1 (Gini Mean Difference, Gini Index).

M(F )= 1
2 |

R
|

R

|x& y| dF(x) dF( y). (4)

is the Gini mean difference of F. R(F )=M(F )�|+(F )| is the Gini index
of F.

M(F ) is the mean Euclidean distance between two independent random
variables divided by two, where both random variables are distributed with
F. R(F) is the mean Euclidean distance divided by twice the absolute value
of the expectation. Let F&1(s)=inf[x : F(x)�s], s # ]0, 1], denote the
inverse distribution function of F, and GLF (t)=�t

0 F &1(s) ds, t # [0, 1].
GLF is the generalized Lorenz function, and its graph is the generalized
Lorenz curve of F. The Lorenz function is defined by LF (t)=
+(F )&1 GLF (t), if +(F )>0, and LF (t)=1&+(F )&1 GLF (1&t), if +(F)<0.

The following well known proposition establishes a relation between the
Gini index and the Lorenz curve.

Proposition 2.1. Let F(0)=0. Then

(i) M(F ) equals the area between the graphs of the two functions
t [ GLF (t) and its dual t [ GLF (t)=+(F )&GLF (1&t), t # [0, 1].

(ii) R(F ) equals the area between the graphs of the two functions
t [ LF (t) and its dual t [ L� F (t)=1&LF (1&t), t # [0, 1].

As we demonstrate in Section 5 (Remark 5.1) the assumption F(0)=0
can be dropped, and Proposition 2.1 holds for any F that has finite non-
zero expectation.
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The special case of an empirical distribution is particularly important.
Let Fa denote the distribution function that gives equal weight to each of
n, not necessarily different, points ai in R, a1� } } } �an . Let a=(a1 , ..., an)
and a� =n&1(a1+ } } } +an). Then the Lorenz curve of Fa is the linear inter-
polation of the points 1�n(k, a1 �a� + } } } +ak �a� ), k=1, ..., n, in two-space.

M(a1 , ..., an)=M(Fa)=
1

2n2 :
n

j=1

:
n

i=1

|ai&aj | (5)

is the Gini mean difference of the sample a=(a1 , ..., an), and

R(a1 , ..., an)=R(Fa)=
1
a�

M(a1 , ..., an) (6)

is the Gini index of a, provided the sample mean is not zero. The Gini index
of a equals the Gini mean difference of the ``scaled down'' sample
a~ =(a1 �a� , ..., an �a� ),

R(a1 , ..., an)=
1

2n2 :
n

j=1

:
n

i=1 }
ai

a�
&

aj

a� } . (7)

We state several important properties of the Gini index and the Gini
mean difference for empirical distributions of nonnegative data. Parts of
them hold as well for general probability distributions and are shown later
in the general multivariate case.

Proposition 2.2. (i) Let (a1 , ..., an) # Rn
+ with � ai>0. Then

0=R(a� , ..., a� )�R(a1 , ..., an)�R \0, ..., 0, :
n

i=1

ai+=1&
1
n

<1,

R(;a1 , ..., ;an)=R(a1 , ..., an) for every ;>0,

R(a1+*, ..., an+*)=
a�

a� +*
R(a1 , ..., an) for every *>0. (8)

(ii) R is strictly increasing with the Lorenz order, i.e.,

R(a1 , ..., an)>R(b1 , ..., bn) if LFa(t)�LFb(t) for all t and < for some t.

(iii) R is a continuous function Rn
+ � R.
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Proposition 2.3. (i) Let (a1 , ..., an) # Rn
+ with � ai>0. Then

0=M(a� , ..., a� )�M(a1 , ..., an)�M \0, ..., 0, :
n

i=1

ai+=a� \1&
1
n+<a� ,

M(;a1 , ..., ;an)=;M(a1 , ..., an) for every ;>0,

M(a1+*, ..., an+*)=M(a1 , ..., an) for every * # R.

(ii) M is strictly increasing with the Lorenz order.

(iii) M is a continuous function Rn
+ � R.

These and other properties have been investigated by many authors. For
surveys and references, see Nyga# rd and Sandstro� m (1981) and Giorgi
(1990, 1992).

3. MULTIVARIATE DILATIONS AND THE LIFT ZONOID

Let Fd be the class of probability distribution functions F : Rd � R with
finite mean vector, and Fd

0 be the subclass with finite mean vector no com-
ponent of which is zero. Fd

+ /Fd
0 denotes the subclass of probability dis-

tributions on the nonnegative orthant Rd
+ . Given F # Fd, let

+(F )=�Rd x dF(x)=(+1 , ..., +d). For every F # Fd and ;=(;1 , ..., ;d) # Rd,
define F } ;(x1 , ..., xd)=F(x1;1 , ..., xd;d), and F+;(x1 , ..., xd)=F(x1+;1 ,
..., xd+;d) .

For F # Fd
0 , F� =F } +(F ) is called the relative distribution function, namely,

if F is the distribution function of a random vector X=(X1 , ..., Xd), then F�
is the distribution of

X� =\X1

+1

, ...,
Xd

+d+ .

In the sequel, when using F� , we tacitly assume that F # Fd
0 .

Given F and G in Fd, let X and Y be two random vectors that are dis-
tributed according to F and G, respectively. G is a dilation of F, FPG, if
there exists a random vector Z such that E(Z | X)=0 and Y has the same
distribution as X+Z. The random variable Z may be interpreted as
``noise'', so that Y is distributed like X plus some noise.

We call G an absolute dilation of F, FP a G, if, G&+(G) is a dilation of
F&+(F ) . Given F and G in Fd

0 , G is a relative dilation of F, FP r G, if, G�
is a dilation of F� . For F # Fd and p=( p1 , ..., pd) # Rd we denote
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F(t, p)=|
[x # Rd : xpT�t]

dF(x), t # R,

F� (t, p)=|
[x # Rd : xpT�t]

dF� (x), t # R.

If F is the distribution function of the random vector X in Rd, then F( } , p)
is the distribution function of the random variable p1X1+ } } } + pdXd in R;
similarly F� ( } , p) is the distribution function of p1 X1�+1+ } } } + pd Xd�+d .

G is a directional dilation of F, FP dirr G, if, for every p # Sd&1, G( } , p)
is a dilation of F( } , P). We say that G is a directional relative dilation of F,
FP dirr G, if, for every p # Sd&1, G� ( } , p) is a dilation of F� ( } , p). Similarly,
G is named a directional absolute dilation of F, FP dira G, if, for every
p # S d&1, G( } , p) is an absolute dilation of F( } , p).

All these dilations are partial orders (reflexive, transitive and antisym-
metric) on Fd, and related by the following implications.

FPG O FPdir G

- -

FPr O FPdirr G

FPG O FPdir G

- -

FPa G O FPdira G

But, in general, no reverse implication holds. For proofs, see Section 6
below.

Koshevoy and Mosler (1995, 1996) suggested a multivariate generaliza-
tion of the Lorenz curve and the generalized Lorenz curve that has the
following form.

Definition 3.1. Let F # Fd. For a measurable function h : Rd � [0, 1],
consider the vector (z0(F, h), z(F, h)) # Rd+1, where

z0(F, h)=|
Rd

h(x) dF(x), z(F, h)=|
Rd

h(x) x dF(x).

The set

Z� (F )#[(z0(F, h), z(F, h)) : h : Rd � [0, 1] measurable]

is called the lift-zonoid of F. LZ(F)=Z� (F� ) is called the Lorenz zonoid of F.

259MULTIVARIATE GINI INDICES



File: 683J 165509 . By:XX . Date:06:02:97 . Time:10:11 LOP8M. V8.0. Page 01:01
Codes: 1556 Signs: 1035 . Length: 45 pic 0 pts, 190 mm

The lift zonoid is a multivariate generalization of the generalized Lorenz
curve, and the Lorenz zonoid is one of the Lorenz curve. In case d=1, the
Lorenz zonoid is the area between the Lorenz and the dual Lorenz curves,
and the lift zonoid is the area between the generalized Lorenz curve and its
dual, (Fig. 1).

Let us recall some properties of the lift zonoid to provide an intuition for
working with it. The lift zonoid of F # Fd is a convex compact set and con-
tains 0 # Rd+1, it is symmetric around 1�2(1, +(F )). If the support of F is
in Rd

+ , i.e., F # Fd
+ , then Z� (F ) is contained in the (d+1)-dimensional rec-

tangle between 0 and (1, +(F )). The lift zonoid uniquely determines the
underlying distribution.

The lift zonoid of a probability distribution F # Fd can be also seen as
the set-valued expectation of the random segment 0, (1, X) in Rd+1, where

Fig. 1. Lift zonoids and Lorenz zonoids when d=1. Lift zonoids (a and c) and Lorenz
zonoids (b and d) for FA and FB , respectively, where A=(1, 2, 3)T and B=(1, &0.5, &2)T.
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X is a random vector distributed by F. Recall the definition of a random
convex set and its expectation. A random convex set C is a Borel
measurable map from a probability space (0, B, P) to the space of non-
empty, compact, convex subsets of Rd. The set-valued expectation, E(C), of
a random convex set C is the set given implicitly by

�E(C)( p)=E(�C( p)), p # Rd, (9)

where �C denotes the support function of C. This set-valued expectation
has appeared in different settings. See, for example, Weil and Wieacker
(1993).

We illustrate the definition of the lift zonoid for empirical distributions.
Let A=[ais] be a data matrix, and FA be the empirical distribution. Then
Z� (FA) is the Minkowski sum of line segments 0, (1�n, ai �n), i=1, ..., n,

Z� (FA)=0, \1
n

,
a1

n +� } } } �0, \1
n

,
an

n + .

Z� (FA) is the convex hull of points of the form �n
i=1 hi } (1�n, ai�n),

hi # [0, 1], but not all these points are extreme.

Example 1. Let the data matrix be a vector a # Rd. Then FA is the
empirical distribution putting unit mass to the point a. Z� (FA) is the seg-
ment that joins (0, 0) and (1, a).

Example 2. Let the data matrix be

1 3

A=\2 2+ .

3 4

Then FA is the two-dimensional empirical distribution that puts mass 1
3 to

points (1, 3), (2, 2) and (3, 4). Z� (FA) is the convex polytope with the
following set of vertices, [(0, 0, 0), ( 1

3 , 2
3 , 2

3), ( 1
3 , 1

3 , 1), ( 1
3 , 1, 4

3), ( 2
3 , 1, 5

3),
( 2

3 , 4
3 , 7

3), ( 2
3 , 5

3 , 2), (1, 2, 3)].

The set inclusion of lift-zonoids yields an ordering which is equivalent to
the directional dilation. The directional relative and absolute dilations are
similarly characterized.

Theorem 3.1. (i) FP dir G if and only if Z� (F )/Z� (G),

(ii) FP dirr G if and only if LZ(F )/LZ(G),

(iii) FP dira G if and only if Z� (F&+(F ))/Z� (G&+(G)).
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For all these properties of the lift zonoid, see Koshevoy and Mosler
(1995, 1996).

Both relative dilation and directional relative dilation are multivariate
extensions of the usual univariate Lorenz ordering, i.e. the ordering of
Lorenz curves. Pdirr has been named the multivariate Lorenz order in
Mosler (1994); see also Koshevoy and Mosler (1996). If we compare
empirical distributions with the same number, say n, of support points in
Rd, dilation and directional dilation correspond to majorization and direc-
tional majorization of n_d matrices; see Marshall and Olkin (1979,
ch. 15).

4. THE MULTIVARIATE DISTANCE�GINI INDEX

The definition of the univariate Gini mean difference (4) has the
following multivariate generalization.

Definition 4.1. For F # Fd the distance-Gini mean difference is

MD(F)=
1

2d |
Rd |Rd

&x& y& dF(x) dF( y) (10)

where & }& denotes the Euclidean distance in Rd. RD(F )=MD(F� ) is the
distance-Gini index.

In the case of an empirical distribution function, MD(FA) is given by
equation (1), and RD(FA) by

RD(FA)=
1

2dn2 :
n

j=1

:
n

i=1
\ :

d

s=1

(ais&ajs)
2

a� 2
s +

1�2

. (11)

Several properties of the distance-Gini mean difference and the distance-Gini
index follow easily from the definitions. Recall that, for;=(;1 , ..., ;d) # Rd, we
denote F};(x1 , ..., xd)=F(x1;1 , ..., xd;d) and F+;(x1 , ..., xd)=F(x1+;1 , ...,
xd+;d).

Proposition 4.1. For all F # Fd,

(i) 0�MD(F ),

(ii) MD(F )=0 if and only if F is a one-point distribution.

(iii) MD(F+;)=MD for all ;1 , ..., ;d .

(iv) MD is continuous w.r.t weak convergence of distributions.
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Proposition 4.2. For all F # Fd
0 ,

(i) 0�RD(F ),

(ii) RD(F )=0 if and only if F is a one-point distribution.

(iii) RD(F};)=RD for all ;1 , ..., ;d>0.

(iv) RD is continuous w.r.t weak convergence of distributions.

Proposition 4.2(iii) says that RD is vector scale invariant, while Proposi-
tion 4.1(iii) states that MD is translation invariant. Regarding upper bounds
we have the following result.

Theorem 4.1. For F # Fd
+, the inequalities

MD(F )<
1
d

:
d

j=1

+j (F ), RD(F )<1,

hold and the bounds are sharp.

Proof. Obviously,

MD(F )=
1

2d |
Rd |Rd

&x& y& dF(x) dF( y)

�
1
2d |

Rd |Rd
:
d

j=1

|xj& yj | dF(x) dF( y)

=
1
d

:
d

j=1

1
2 |

Rd |Rd
|xj& yj | dF(x) dF( y)

=
1
d

:
d

j=1

1
2 |

R
|

R

|xj& yj | dF j (xj) dF j ( yj)

=
1
d

:
d

j=1

M(F j). (12)

Here F j is the j th marginal distribution. As F # Fd
+ holds, we have

F j(0)=0 for all j and therefore M(F j)<+j , j=1, ..., d. Thus, (12) yields
MD(F)<1�d �j +j (F ).

It is easily seen that the upper bound d&1 �j +j (F ) cannot be improved.
For example, consider the n_d matrix A(n)=[a (n)

is ], a (n)
is =n+i (F ), if

i=s, s=1, ..., d, and a (n)
is =0 otherwise. Then

MD(FA(n))=
1

2n2d _n :
d

i=1

:
d

j=1, j{i

(+2
i ++2

j )1�2+2(n&d ) n :
d

i=1

+i& . (13)
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That implies limn � � MD(FA(n))=d&1 �j +j (F ), which shows that
d&1 �j +j (F) is the least upper bound for MD.

The least upper bound for RD is established by passing from F to F� .
Recall that +j (F� )=1 for j=1, ..., d. K

Consider a property that is desirable for an index of multivariate dis-
parity. It says that, if an attribute is added that does not vary in the
population, the disparity index remains essentially unchanged. More
precisely, it multiplies by a factor that depends only on the dimension.

Definition 4.2 (Ceteris Paribus Property). Let Jd be a real valued
function that is defined on a subset Dd of Fd, d # N. We say that Jd, d # N,
has the ceteris paribus property if

Jd+1(F�E!0
)=#(d ) Jd (F ) for all F # Dd, !0 # R, d # N. (14)

Here E!0
denotes the univariate one-point distribution at !0 , and #(d) is a

constant for every d.

Theorem 4.2. MD and RD have the ceteris paribus property with

#(d )=
d

d+1
.

The proof is obvious from the definition of MD .

Theorem 4.3. Let dp denote the rotation invariant area element on the
sphere Sd&1, d�2. There holds

MD(F )=
1((d+1)�2)
4d?(d&1)�2 |

p # Sd&1 |
+�

&�
|

+�

&�
|u&v| dF(u, p) dF(v, p) dp, (15)

RD(F )=
1((d+1)�2)
4d?(d&1)�2 |

p # Sd&1 |
+�

&�
|

+�

&�
|u&v| dF� (u, p) dF� (v, p) dp. (16)

Proof. We use the following formula by Helgason (1980, Lemma 7.2).
For every z # Rd and k>0 holds

|
p # Sd&1

|zpT |k dp=
2?(d&1)�2 1((k+1)�2)

1((d+k)�2)
&z&k. (17)
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From this formula with k=1, we conclude that

MD(F )=
1

2d |
Rd |Rd

&x& y& dF(x) dF( y)

=
1
2d

1((d+1)�2)
2?(d&1)�2 |

Rd |Rd \|p # Sd&1
|xpT&ypT | dp+ dF(x) dF( y)

=
1
2d

1((d+1)�2)
2?(d&1)�2 |

p # Sd&1 \|Rd |Rd
|xpT&ypT | dF(x) dF( y)+ dp

=
1((d+1)�2)
4d?(d&1)�2 |

p # Sd&1 |
+�

&�
|

+�

&�
|u&v| dF(u, p) dF(v, p) dp. (18)

This proves (15). The result for RD follows immediately with F� in place
of F. K

Recall that the area of Sd&1 equals 2?d�2�1(d�2). Equation (15) in
Theorem 4.3 says that the distance-Gini mean difference MD is a constant
times the average, over all directions p in the sphere, of the Gini indices of
all univariate distribution functions F( } , p),

MD(F )=
1((d+1)�2) ?1�2

1(d�2) d _1(d�2)
2?d�2 |

p # Sd&1
M(F( } , p)) dp& , (19)

and similarly for RD(F ). Recall, that the Gamma-function
1(s)=��

0 ts&1e&t dt has the following properties: - ?=1( 1
2) and

1(s+1)=s1(x); and the Beta-function B(a, b)=�1
0 ta&1(1&t)b&1 dt is

equal to 1(a) 1(b)�1(a+b). Therefore,

1((d+1)�2) ?1�2

1(d�2) d
=

1((d+1)�2) 1(1�2)
21((d+2)�2)

=
B((d+1)�2, 1�2)

2
.

By the mean value theorem we conclude:

Corollary 4.1. For every F there exist some p and p~ # S d&1 such that

MD(F )=
B((d+1)�2, 1�2)

2
M(F( } , p))

and

RD(F )=
B((d+1)�2, 1�2)

2
R(F� ( } , p~ )).
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The corollary says that, for every distribution F, there are directions p
and p~ that reflect the dependence structure of F, i.e. the interplay between
the attributes, for the Gini mean difference and the Gini index, respectively.

5. THE MULTIVARIATE VOLUME-GINI INDEX

Another view on the univariate Gini index is that it amounts to twice the
area between the Lorenz curve and the diagonal. We now extend this view
to the multivariate case.

Given F # Fd, let X, X1 , ..., Xd be independent random vectors each of
which is distributed according to F. Q denotes the (d+1)_(d+1) matrix
having rows (1, X), (1, X1), ..., (1, Xd), and E |det Q| is the expectation of
the modulus of its determinant. The term (d!)&1 E |det Q| was called a
multivariate Gini index by Wilks (1960); see Oja (1983) and Giovagnoli
and Wynn (1995). Oja (1983) has interpreted it via the average volume of
random simplexes with vertices X, X1 , ..., Xd . The following theorem shows
that ((d+1)!)&1 E |det Q| equals the volume of the lift-zonoid of F.

Theorem 5.1. Let F be a given distribution function in Rd. Let
X, X1 , ..., Xd be independent random vectors each of which is distributed
according to F, and let Q denote the (d+1)_(d+1) matrix having rows
(1, X), (1, X1), ..., (1, Xd). Then

Vd+1(Z� (F ))=
1

(d+1)!
E |det Q|.

Proof. Zonoids are limits of zonotopes. Recall that a zonotope in Rk is
the Minkowski sum of line segments, say

0, y1� } } } �0, yn/Rk with some given yi # Rk. (20)

It has volume (see, e.g., Shephard 1974)

:
1�i1� } } } �ik�n

|det[ yi1 , ..., yik]|. (21)

If k>n, the volume equals zero, because each determinant has at least
two equal columns and therefore vanishes. For a given F, there exists a
sequence F& , & # N, of distribution functions with finite supports in Rd

+ that
converges weakly to F, i.e., lim& � g dF&=� g dF for every continuous and
bounded function g : Rd � R. Due to the continuity of zonoids with respect to
weak convergence (Bolker 1969), we have lim& $(Z� (F&), Z� (F ))=0, where
$ is the Hausdorff distance. The volume is a continuous function with respect
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to the Hausdorff distance. Therefore, Vd+1(Z� (F))=lim& Vd+1(Z� (F&)). Each
volume Vd+1(Z� (F&)) can be calculated by the formula (21). Let F& have atoms
at x1 , ..., xm with probabilities q1 , ..., qm . Then Z� (F&)=0, (q1 , q1x1)� } } } �

0, (qm , qmxm). Hence

Vd+1(Z� (F&))= :
1�i1< } } } id+1�m

|det[(qi1 , qi1xi1), ..., (qid+1
, qid+1

xid+1
)]|

=
1

(d+1)!
:
m

i1 , ..., id+1=1

qi1 } } } } } qid+1
|det[(1, xi1), ..., (1, xid+1

)]|

=
1

(d+1)!
E |det QF& |.

This completes the proof. K

But the volume of a lift-zonoid equals zero rather often, also if F is no
one-point distribution. Observe, that if the vectors x1 , ..., xn are linearly
dependent, then the volume of the zonotope in (20) equals zero. Thus,
whenever the support of F is contained in a linear subspace of Rd with
dimension less than d, then the volume of the lift zonoid is zero. E.g., in the
case of an empirical distribution F, if one of the attributes is equally dis-
tributed in the population, or if two attributes have the same distribution,
then Vd+1(Z� (F ))=0.

The volume of the Lorenz zonoid is given by the following formula.

Vd+1(LZ(F ))=
1

`d
j=1 | +j |

Vd+1(Z� (F )), F # Fd
0 . (22)

In Mosler (1994) the (d+1)-dimensional volume of LZ(F ) has been
introduced as a multivariate Gini index, called the Gini zonoid index.
Although this index shows a number of useful properties (boundedness
between 0 and 1, 0 at one-point distributions, vector scale invariance;
weak monotonicity with multivariate dilations), it may be zero also at dis-
tributions that are not concentrated at one point. To avoid this drawback
of the Gini zonoid index, we propose the following definition. Let Cd=
[(z0 , z1 , ..., zd) # Rd+1 : z0=0, 0�zs�1, s=1, ..., d], which is a d-dimen-
sional cube in Rd+1. Instead of the volume of the lift zonoid, we use the
volume of the lift zonoid ``expanded'' by this cube.

Definition 5.1. For F # Fd, the volume-Gini mean difference is
defined by

MV(F )=
1

2d&1
(Vd+1(Z� (F )�Cd)&1). (23)

For F # Fd
0 , RV(F )=MV(F� ) is the volume-Gini index.

267MULTIVARIATE GINI INDICES



File: 683J 165517 . By:CV . Date:06:02:97 . Time:08:01 LOP8M. V8.0. Page 01:01
Codes: 2855 Signs: 2044 . Length: 45 pic 0 pts, 190 mm

Equation (23) can be rewritten in the form

MV(F )=
1

2d&1
(Vd+1(Z� (F)�Cd)&Vd+1(Z� (E+(F ))�Cd)), (24)

where E+(F ) is the one-point distribution at +(F ). (24) says that the volume-
Gini mean difference is proportional to the volume of the lift zonoid of a
distribution, ``expanded'' by the d-dimensioned unit cube, minus the
volume of the lift zonoid of the one-point distribution at the mean vector,
``expanded'' by the same cube.

Figure 2 illustrates this in the case d=1.

Remark 5.1. By the lift zonoid approach we are also able to prove a
general result on the univariate Gini mean difference. For d=1, by Defini-
tion 5.1, the volume�Gini mean difference, MV(F ), equals the two-dimen-
sional volume of the lift zonoid, V2(Z� (F )). Theorem 5.1 says that

V2(Z� (F ))=
1
2 |

R
|

R } det \1
x

1
y+} dF(x) dF( y). (25)

As |x& y|=|det( 1
x

1
y)|, we have

V2(Z� (F ))=MD(F )=M(F ).

Recall that, for d=1, the lift zonoid is the area between the generalized
Lorenz curve and its dual. So, we conclude that the usual Gini mean dif-
ference equals the area between the generalized Lorenz curve and its dual.
This proves that Proposition 2.1 is true not only for distributions on R+ ,
as stated, but for general ones.

Remark 5.2. MD(F ) and RD(F) are related to the lift zonoid and the
Lorenz zonoid, respectively: For p=( p1 , ..., pd) # Sd&1, let prp denote the
projection of Rd+1 on the two-dimensioned plane that is spanned by the
vectors (1, 0, ..., 0) and (0, p1 , ..., pd). Then, for z=(z0 , z1 , ..., zd) # Rd+1,
we get prp(z)=(z0 , � zi pi) with respect to this base. The projection of the
lift zonoid by prp equals the lift zonoid of F( } , p) (Koshevoy and Mosler
1995). By this and Corollary 4.1 we can state that MD(F ) is B(d+1�2, 1

2)�2
times the average area of these two dimensioned projections of the lift
zonoid. Similarly, RD(F ) is the same with the Lorenz zonoid.

The choice of the constant 1�(2d&1) in (23) is explained in the following
theorem. We need some notations: For a nonempty subset K/[1, ..., d],
F(K) denotes the marginal distribution with respect to the coordinates
indexed by K.

268 KOSHEVOY AND MOSLER



File: 683J 165518 . By:XX . Date:06:02:97 . Time:10:12 LOP8M. V8.0. Page 01:01
Codes: 2237 Signs: 1423 . Length: 45 pic 0 pts, 190 mm

Fig. 2. Definition of MV when d=1. GLF is the generalized Lorenz curve of a univariate
distribution F, and GLF is its dual. The segment D is the lift zonoid of the one-point distribu-
tion E+ at the mean + of F. GLF and GLF form the boundary of the lift zonoid Z� (F). The
cube in dimension one is the segment C. Thus, Z� (E+)�C is the area bounded by D, C, D$, C$,
and Z� (F )�C is the area bounded by GLF , GL$, C, and C$. By (24), the volume-Gini mean
difference amounts to the difference of these two areas, which is equal to the area between
GLF and GLF .

Theorem 5.2.

MV(F )=
1

2d&1
:

<{K/[1, ..., d]

V |K|+1(Z� (F (K))), (26)

RV(F )=
1

2d&1
:

<{K/[1, ..., d]

V |K|+1(Z� (F� (K))). (27)

Note that Formula (2), MV for empirical distributions, follows from (21)
and (26). For d=2, the theorem says that three times MV(F ) equals the
volume of the lift zonoid plus the Gini mean differences of the two
marginal distributions.

Remark 5.3. By Equation (26), the volume-Gini mean difference is the
average of the volumes of projections of the lift zonoid over all coordinate
subspaces. They are spanned by (1, 0, ..., 0) and (0, er), r # K, K # [1, ..., d].
Here er is the r-th coordinate unit vector in Rd. By (27) the same holds for
the volume-Gini index and the Lorenz zonoid.

Proof of Theorem 5.2. We prove (26) for an empirical distribution F.
Then an approximation argument yields (26) for a general distribution.
(27) obviously follows from (26).
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Let F have atoms at x1 , ..., xm in Rd with probabilities q1 , ..., qm . Then

Z� (F )�Cd=0, (q1 , q1 x1)� } } } �0, (qm , qm xm)� :
d

s=1

0, (0, es).

Hence, by (21)

Vd+1(Z� (F )�Cd)

= :
1�i1< } } } id+1�m

|det[(qi1
, qi1 xi1), ..., (qid+1

, qid+1
xid+1

)]|

+ :
d&1

l=1

:
1�i1< } } } id+1&l�m

:
1�s1< } } } sl�d

|det[(qi1
, qi1 xi1), ..., (qid+1&l , qid+1&l xid+1& l), (0, es1

), ..., (0, esl)]|

+ :
m

i=1

|det[(qi , qixi), (0, e1), ..., (0, ed)]|.

Let 1�l�d&1 and 1�s1< } } } sl�d be fixed, K=[1, ..., d]"[s1 , ..., sl].
Denote xK the coordinates of a vector x in the set K. Then we have

V |K|+1(Z� (F (K)))

= :
1�i1< } } } id+1&l�m

det[(qi1 , qi1 xK
i1 ), ..., (qid+1&l , qid+1&l x

K
id+1&l

)]|

= :
1�i1< } } } id+1&l�m

det[(qi1 , qi1 xi1), ..., (qid+1&l , qid+1&l xid+1&l),

(0, es1
), ..., (0, esl)]|. (28)

In view of q1+ } } } +qm=1,

:
m

i=1

|det[(qi , qixi)(0, e1), ..., (0, ed)]|=1. (29)

(28) and (29) yield (26). K

The following three theorems establish properties of RV and MV .

Proposition 5.1. For all F # Fd
0 ,

(i) 0�RV(F ),

(ii) RV(F )=0 if and only if F is a one-point distribution,

(iii) RV(F};)=RV(F ) for all ;1 , ..., ;d>0.
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(iv) RV is continuous w.r.t weak convergence of distributions.

(v) If F # Fd
+ , then RV(F )<1 and the bound is sharp.

Proof. (i) The volume is a nonnegative function.

(ii) If F is a one-point distribution, then, for every K, Z� (F� (K)) is the
main diagonal of the unit hypercube in R[ |K|+1] and has volume zero.
Therefore RV(F )=0. If F is no one-point distribution, at least one of its
univariate marginals, say F ( j*), is the same. Then the univariate Gini index
R(F ( j*)) is positive. Since V2(Z� (F� ( j*)))=R(F ( j*)), at least one summand in
(27) does not vanish, and therefore RV(F )>0.

(iii) The vector scale invariance is obvious from the definition of
RV(F ), since it is based on the relative distribution F� only.

(iv) follows from Theorem 7.1 in Koshevoy and Mosler (1995).

(v) For every K, Z� (F� (K)) is contained in the unit hypercube of
R |K|+1, hence 0�V |K| +1(Z� (F� (K)))<1, and, by (27), 0�RV(F )<1. It is
easily seen that the upper bound 1 cannot be improved. For example, con-
sider the distribution F(x)=>d

i=1 Fi (xi) where Fi (xi)=0 if xi<0,
Fi (xi)=(n&1)�n if 0�xi<1, Fx(xi)=1 if xi�1. Then RV(F ) � 1, for
n � �. K

Proposition 5.2. For all F # Fd,

(i) 0�MV(F ),

(ii) MV(F )=0 if and only if F is a one-point distribution,

(iii) MV(F+;)=MV(F ) for all ;1 , ..., ;d .

(iv) MV is continuous w.r.t weak convergence of distributions.

(v) If F # Fd
+ , then

MV(F )<
1

2d&1
:

<{K/[1, ..., d]

`
i # K

+i�
1

2d&1
((max

i
+i+1)d&1)

and the first inequality cannot be improved.

The proof is similar to that of Proposition 5.1.

Theorem 5.3. MV and RV have the ceteris paribus property with

#(d )=
2d&1

2d+1&1
.

Proof. It is easily seen, that V |K|+1(Z� ((F�E!)(K))=0 if d+1 # K. If
d+1 � K then F (K)=(F�E!)(K). This and (26) yield the proposition. K
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6. CONSISTENCY WITH MULTIVARIATE DILATIONS

The univariate Gini index respects dilation and Lorenz order. We show
that our distance-Gini and volume-Gini indices do the same for properly
defined extensions of these orderings.

Proposition 6.1 The following implications hold

(i) FPG O FP rG O FP dirr G.

(ii) FPG O FP aG O FP dira G.

(iii) FPG O FP dir G O FP dirr G and FP dira G.

(iv) FP dirr G O R(F( } , p))�R(G( } , p)) for all p # Sd&1.

Proof. A standard characterization of dilation says that FPG if and only
if � ,(x) dF(x)�� ,(x) dG(x) holds for all convex functions Rd � R; see, e.g.,
the references in Mosler (1994). Further, FPG implies +(F)=+(G).

(i) Assume FPG, and let , : Rd�R be convex. Then, with (+1 , ..., +d)=
+(F )=+(G), the function x [ ,(x1 �+1 , ..., xd�+d) is convex, too. We con-
clude

| ,(x) dF� (x)=| , \x1

+1

, ...,
xd

+d+ dF(x)

�| , \x1

+1

, ...,
xd

+d+ dG(x)=| ,(x) dG� (x).

Therefore FP r G. Now assume that FP r G. Let p # S d&1, � : R � R con-
vex. Then the function x [ �(xpT) is convex, and from FP r G follows that

| �(u) dF� (u, p)=| �(xpT ) dF� (x)

�| �(xpT) dG� (x)=| �(u) dG� (u, p),

hence FP dirr G.

(ii) The proof is similar to that of (i).

(iii) Dilation implies directional dilation. The rest follows from parts
(i) and (ii) with d=1.

(iv) If FP dirr G and p # S d&1, then F( } , p) is smaller than G( } , p) in
relative dilation (=usual Lorenz order). As the usual Gini index is
consistent with Lorenz order, we conclude (iv). K
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Note that, besides the implications given in Proposition 6.1, in general
no other implications hold between the various multivariate dilations.

Proposition 6.2. (i) P, P dir are partial orders (reflexive, transitive,
antisymmetric) in Fd.

(ii) Pr and Pdirr are preorders (reflexive, transitive) in Fd
0 .

(iii) P a and Pdira are preorders (reflexive, transitive) in Fd.

Note that the preorders Pr , P dirr , P a and Pdira are also antisymmetric
when applied to the proper factor space.

Proof. (i) The antisymmetry of Pdir is proven in Koshevoy and
Mosler (1995). The antisymmetry of P follows from the antisymmetry of
Pdir and Proposition 6.1.

(ii) and (iii) follow from (i) and Proposition 6.1. K

Theorem 6.1. The distance-Gini index RD and the volume-Gini index RV

are strictly increasing with

(i) dilation,

(ii) directional dilation,

(iii) relative dilation,

(iv) directional relative dilation.

Proof. In view of Proposition 6.1, only (iv) has to be shown. Suppose
FP dirr G, hence R(F( } , p))�R(G( } , p)) for all p # Sd&1. Then

|
+�

&�
|

+�

&�
|u&v| dF� (u, p) dF� (v, p)�|

+�

&�
|

+�

&�
|u&v| dG� (u, p) dG� (v, p)

for all p. Therefore,

|
p # S d&1 |

+�

&�
|

+�

&�
|u&v| dF� (u, p) dF� (v, p) dp

�|
p # Sd&1 |

+�

&�
|

+�

&�
|u&v| dG� (u, p) dG� (v, p) dp

for all p. This yields, according to Proposition 4.3, RD(F )�RD(G). The
result for RD follows immediately from Theorems 3.1, 5.2 and the fact that
directional relative dilation among two distributions implies the same
ordering among their marginals: If FP dirr G then F (K) P dirr G(K) for all
K, <{K/[1, ..., d]. The strict monotonicity is seen from Theorems 3.1,
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5.2 and the fact that the lift zonoid uniquely determines the underlying
distribution: Z� (F )=Z� (G) iff F=G (Koshevoy and Mosler, 1995). K

For the distance-Gini and the volume-Gini mean differences, we have an
analogous theorem.

Theorem 6.2. The distance-Gini mean difference MD and volume-Gini
mean difference MV are strictly increasing with

(i) dilation,

(ii) directional dilation,

(iii) absolute dilation,

(iv) directional absolute dilation.

Proof. Proofs of (i) and (ii) are similar to those of (i) and (ii) in
Theorem 6.1. (iii) and (iv) follow from Propositions 4.1 and 5.2
respectively.

7. CONCLUSIONS

We have investigated two different approaches to extend the usual Gini
index and Gini mean difference to the multivariate case. Both extensions
preserve important properties of the univariate notions, are increasing with
proper multivariate dilations and coincide in the univariate case. They are
related via the lift zonoid: the distance-Gini mean difference is proportional
to an average of areas of two-dimensional projections of the lift zonoid, the
volume-Gini mean difference equals the average of volumes of projections
of the lift zonoid on coordinate subspaces. But, in dimensions d>1 they
are different. They have the ceteris paribus property with different con-
stants. The Gini mean difference is invariant under the transformations of
Euclidean space that preserve the distance, i.e., under the orthogonal
group. The volume-Gini mean difference is invariant only under the sub-
group of reflections. Therefore the two notions can order distributions in
opposite directions, as we illustrate by the following example. Consider FA

and FB with

A=\3
1

1
1+ and B=\2+((7 - 3)�16)

2&((7 - 3)�16)
1+(7�16)
1&(7�16)+.

Then 1
2=MD(FA)>MD(FB)= 7

16, while 1
3=MV(FA)<MV(FB)=7(1+- 3)�48.

The distance-Gini index and the volume-Gini index of a given empirical
distribution are easily calculated. A computer program, written in GAUSS,
can be obtained from the authors.
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TABLE I

The Multivariate Gini Indices RD, RV , and RS for Three
Types of Iris; Data from Fisher (1936). For Further Con-
trast, the Univariate Gini, Index R[k] Is Given for Each
Attribute k, k=1, 2, 3, 4.

Iris setosa Iris versicolor Iris virginica

RD 0.08536007 0.12217668 0.14415565
RV 0.042062259 0.067639891 0.083820681
RS 0.13663000 0.20862000 0.24658000

R[1] 0.19620000 0.29000000 0.35136000
R[2] 0.20624000 0.17508000 0.17508000
R[3] 0.09276000 0.25992000 0.30616000
R[4] 0.05132000 0.10948000 0.15372000

Many other multivariate definitions are possible. A popular approach is
to use the arithmetic mean, MS resp. RS , of the univariate indices,

MS(FA)=
1

2n2d
:
n

i=1

:
n

j=1

:
d

s=1

|ais&ajs |, (30)

RS(FA)=
1

2n2d
:
n

i=1

:
n

j=1

:
d

s=1
} ais

a� s
&

ajs

a� s } . (31)

This is tantamount to employing the L1 distance instead of the Euclidean
distance in our distance�Gini notions. It can be shown that always
RD(F )�RS(F ) and RV(F )�RS(F ) hold. But this approach, as the index
depends on the marginals only, does not reflect the dependency structure
of the underlying distribution.

To illustrate our notions, we calculate them for R. A. Fisher's Iris data
(Fisher 1936). The data include the measurements of four attributes, sepal
length and width and petal length and width, of fifty plants for each of
three types of Iris, Iris setosa, Iris versicolor and Iris virginica. The data
have been used to test the hypothesis that Iris versicolor is a hybrid of the
two other species.

As we can see from Table I, the four attributes are most variable at dif-
ferent types of Iris, as measured by their univariate Gini indices. E.g., the
first attribute, petal length, varies most with Iris virginica, while the second
attribute, petal width, has its maximum Gini index with Iris setosa. But the
three multivariate Gini indices, RD , RV , and RS , order the variability of
the three samples in the same way,

Iris setosa<Iris versicolor<Iris virginica.
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Under the assumption that a hybrid has intermediate variability, we con-
clude that all three multivariate Gini indices back the hypothesis that Iris
versicolor is a hybrid of the two other species.
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