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 Stochastic Orders and Decision under Risk

 IMS Lecture Notes - Monograph Series (1991)

 SOME THEORY OF STOCHASTIC DOMINANCE

 By Karl Mosler* and Marco Scarsini*!

 Universit?t der Bundeswehr, Hamburg, and Universit? D'Annunzio

 Three different types of stochastic dominance relations are considered: set
 dominance, kernel dominance and higher degree dominance. The connections
 between these definitions are examined. Preservation results are given and im-
 plications between joint and marginal dominance are studied in the finite and
 infinite dimensional setting.

 1. Introduction. For distributions on the real line, two basic stochas-
 tic orderings have been of interest to researchers in many fields: stochastic
 dominance with respect to all increasing functions and stochastic dominance
 with respect to all convex functions. These orderings can be characterized
 by shifts and dilations, respectively, or, in the first case, by inequalities for
 distribution functions, and, in the second case, by inequalities for integrals
 of the distribution functions. Beginning with these characterizations several
 attempts have been made to unify the theory of stochastic dominance rela-

 tions in d-dimensional and more general spaces (Brumelle and Vickson (1975),
 Fishburn and Vickson (1978), Stoyan (1977) (1983), Mosler (1982)). Based on
 this tradition, the primary aim of this paper is to investigate three different
 ways by which stochastic dominance relations on several spaces may be char-
 acterized. The first one is the characterization via probability inequalities for
 certain families of sets. Orderings which allow for this kind of characterization

 are named set dominance orderings. The second approach employs Markov
 kernels to define a stochastic ordering. These orderings are called kernel dom-

 inance orderings. Third, inequalities on integrals of distribution functions are

 * The authors thank Yosi Rinott for processing this paper and Bruno Bassan and two

 anonymous referees for their valuable comments.

 t This paper was written while the second author was a member of GNAFA-CNR.

 AMS 1980 Subject Classification: 90?05, 90?10, 60E15

 Key words and phrases: Set dominance, kernel dominance, higher degree stochas-
 tic dominance, preservation of stochastic orderings, copula, dominance for stochastic
 processes
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 262 SOME THEORY OF STOCHASTIC DOMINANCE

 used to characterize ordering realations which we call higher degree stochas-
 tic dominance orderings. The second part of the paper concentrates on three
 more special questions: under which transformations of the underlying ran-
 dom variables are the above orderings preserved? Under which circumstances
 is an ordering of distributions on a product space implied by the same ordering

 of all marginal distributions? How does the ordering of the finite marginals of

 a process extend to an ordering of the process?

 The paper is mainly expository and certain caveats apply. No complete
 survey of the literature is intended. The results presented strongly reflect
 the taste of the authors and their past work. Most of the results are not
 new. Where applicable, proofs are omitted and references to the literature are
 provided. Where proofs are given they serve partly to illustrate the exposition
 and partly to support new results.

 The paper is organized as follows. Section 2 treats set dominance, Sec-
 tion 3 kernel dominance and Section 4 higher degree dominance. Section 5 is
 devoted to some preservation results and Section 6 contains a relatively com-

 prehensive presentation of marginal vs. global dominance when the copula is
 fixed. Section 7 sketches dominance for stochastic processes.

 2? Set Dominance. Consider a set V of probability measures on a
 measurable space (O,5). The space V can be endowed with a (partial) pre-
 order < defined as follows: for Pl9 P2 ? V9 Pi ^ P2 if and only if Pi(A) <
 P2(A) ~VA ? A9 where AcS.

 Some of the most usually encountered orders on spaces of probability

 measures are of this form (which we will call set dominance).

 For any probability measure ? ?V9 P(A) = JQ Ia(v) ?(??). Therefore,
 if Pi (A) < P2(A)9 VA G A then

 / TaiIAi(u) Px(du) < I TaJAi(u) P2(dw)9 a{ > 0, Ai 6 A9

 by linearity of the expectation and

 ? f???< ? f dP2 (2.1)
 Jq Jq

 for all f such that there exists a sequence f? / f9 with f?(-) = S?=? ai,nlAi n (?)>
 <*iyn > 0, AiiU ? A9 by the Lebesgue monotone convergence theorem. In other
 words, (2.1) holds for all functions f in the closed convex cone generated by
 the indicator functions of sets A ? A.
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 K. MOSLER and M. SCARSINI 263

 In the sequel, given a class ? of measurable functions f : O ?? IR, for

 ??,?2 ? V, we will write Pi <*P2 if and only if JQ f dP1 < ?Q f dP2 \/f G ?
 for which both integrals exist. Again <T is a (partial) pre-order on V. It is
 usually called stochastic dominance with respect to ?. Provided the class A

 (resp. T) is rich enough, the pre-order -< (resp. <*) is actually an order
 (see Alfsen (1971, p. 22), Mosler (1982, Theorem 4.1)).

 We consider some examples. In all the examples the space O will always
 be a Polish space, and S the Borei s-field generated by the open sets. When
 further structure is necessary, it will be specified. In the examples Ai will be

 a class of sets in S and T% will be the convex cone of functions generated by
 indicators of sets A G A%.

 Example 2.1. Let (O, <) be a partially ordered Polish space (POPS),
 where < is closed. A subset A of the partially ordered space is called upper if
 ? ? A and ? < y imply y G A. An upper set of a POPS is measurable. Let A\
 be the class of upper sets of O. Then T\ is the cone of increasing functions. In
 the whole paper "increasing" means "nondecreasing". The order -< is the

 usual stochastic dominance order (Lehmann (1955)), or first degree stochastic
 dominance. In this generality it has been studied by Kamae, Krengel and
 O'Brien (1977).

 Example 2.2. Let O be as in Example 2.1. For ? ? ii the set Ax =
 {y : ? < y} is an upper interval. Call A2 the class of upper intervals of
 O. When O = IR , the order -< is equivalent to the order obtained by
 comparing the survival functions corresponding to Pi and P2. If we define
 &?=x <^(..., s, ...) = </>(..., y,...)-- <?>(..., x,...), then T2 is the cone of func-
 tions f such that

 Vii Vik

 ? ??? ? 0(...,5tl,...,5tfc,...)> 0
 sh -x?i Sik ~Xik

 V{n,...,?*} C {l,...,d}, \/x{. < yij9 j = l,...,fc
 and for all the values of the other arguments of f whose index is not in
 {*ij ???>**}? This order has been studied under different conditions by Cam-

 banis, Simons and Stout (1976), Tchen (1980), R?schendorf (1980), Mosler
 (1984), Scarsini (1988a).

 Example 2.3. Endow a POPS O with a linear space structure and define
 A3 as the class of upper convex sets. We note that T$ contains all the in-
 creasing quasi-concave functions (by definition, a function f is quasi-concave

 if the set {x : f(?) > a} is convex for all a G IR). The set of increasing
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 264 SOME THEORY OF STOCHASTIC DOMINANCE

 quasi-concave functions is not convex, though: in general the sum of two in-
 creasing quasi-concave functions is not quasi-concave. The case O = IR has
 been studied by Levhari, Paroush and Peleg (1975) and Bergmann (1991).

 Example 2.4. Let O be a POPS with an inner product structure. A set
 ?a,a C O is a half-space if it has the form Aa^a = {x : (a9x) > a}. Call A4
 the class of upper half-spaces. If

 f(?) = v((a9x))9 with ? : IR ?? IR increasing, and a > 0, a f 0, (2.2)

 then f G T\9 but the set of functions defined in (2.2) is not convex. This order

 has been studied by Scarsini (1986) and Muliere and Scarsini (1989), and has
 been used to compare random cash flows or bundles of commodities, when the

 price vector is not fixed.

 Example 2.5. Consider O = IRd with the Schur ordering <s, which is a
 closed pre-order, and let As be the class of Schur-convex sets (a set A is Schur-

 convex if I a is a Schur convex function). Then T$ is the class of Schur-convex

 functions (see Nevius, Proschan and Sethuraman (1977), Marshall and Olkin
 (1979)).

 When O is a linear space, another relation can be defined in terms of a
 dual family of functions as follows. For given ?9A9 define

 Tdual = {f : Mx G O, f(?) = -f(-?)9 f G ?}9

 ^duai = {_? :AeA^ where A = ?\A9 and - A = {? : -? G A}.

 Then,
 fdual _ t* irdual t ^dual *t~
 J-x ? J-\9 y-4 = J~49 y-5 = J-5.

 ^ = {4>:(-l)k+1 ? ??? ? V(...,^,...,^,...)>0
 S?! -tft! Sik?Xik

 V{ii,...,4} C {1,. ..,</}, Vxij <#,-},

 ^3U D {F : F is increasing and quasi-convex},

 The class ^ual has interesting economic applications, since it contains
 the utility functions that represent multivariate risk aversion (see Section 4 for

 details).

 Again, the class jrdual is generated by the indicator functions of sets in

 Afual9 where

 A*ual = ??, At"1 = A49 Atuai = A59
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 K. MOSLER and M. SCARSINI 265

 and

 Af1*1 = {? : O \ ? is a lower interval},

 ^ual = {P : O \ ? is a lower convex set}.

 Example 2.6. Let O be a linear space, and let Ae be the class of convex
 sets symmetric about the origin. T? is the cone of central unimodal functions

 (see Anderson (1955), Sherman (1955), and for recent results Dharmadhikari
 and Joag-Dev (1988), Bergmann (1991), Eaton and Perlman (1991)).

 Example 2.7. Let O be a normed space and let ?? be the class of sets
 Aa = {x : \\x\\ < a}. Then ?? is the cone of decreasing in norm functions
 (R?schendorf (1981)).

 Example 2.8. Let O = O? ? O?, where (O?,?) is a metric space. Let As
 be the class of sets As = {x : p(#i,#2) < ?}? Then T% 9 f : O ?? IR, if and
 only if </>(x) = v(p(xi9x2))9 with ? decreasing. This ordering has some useful
 applications in the study of variability and is connected to some variability
 measures like Gini's mean difference.

 Example 2.9. Let O be arbitrary and f a given function O ?> IR. Con-
 sider the class A9 of sets {? : f(?) > a}, a G IR. Then T? is the family
 of all functions ? ? f with ? : IR ?? IR increasing. Obviously Examples 2.7
 and 2.8 are special cases of this ordering. The ordering has applications in
 multivariate choice under risk with deterministic preferences (Kihlstrom and
 Mirman (1974), Levy and Levy (1984)).

 If Pi -< P2, implies Pi -< P2, we write -< D X . In general, if A C B,
 rv ? r>j A r^J A r^J ?

 then ?< t D ?< . Thus X D X for j = 2,3,4. Furthermore -< D
 ~A ~B ~Aj; ~Ai ~^4

 * * > * ? D -< a and ^ . ^ ^ A ' ~ As ~A2 ~A3 ~A7 ~A6

 For a broad exposition about set dominance relations we refer to Bergmann

 (1991).

 3. Kernel Dominance. Consider a measurable space (O,5) as above.
 We investigate situations where a probability distribution dominates another
 one if and only if it is the other one's transform through a proper Markov
 kernel. For Pi G V and a Markov kernel M,

 MPi(A) = / M(x9 A) dPi(x) AeS9

 defines a probability distribution MPi G V. The discrete case is simple: Let
 Pi G V and S be a finite or countable set containing the support of Pi,
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 266 SOME THEORY OF STOCHASTIC DOMINANCE

 S = {??,?2,...}. Define

 ?Kij9 if ? = s? and y = s?,
 1, if x ? S and y = x9

 0, otherwise,

 with

 *ij>0 Vi, j, (3.1)

 5>y = l Vi. (3.2)
 3

 Then M is a Markov kernel,

 MP1({sj}) = J2*iiPi({si}) V;, (3.3)

 and MPi has support contained in S9 again. On the other hand, if M is a
 Markov kernel and Pi and MPi have finite or countable support contained in

 S9 there must be numbers 7r?? such that (3.1), (3.2) and (3.3) hold for M.

 For two Markov kernels N9 M denote

 (? o M)(x9 A) = J N(y9 A) M(x9 dy)9

 hence (JV o M)P = N(MP)9 and let E denote the unit kernel, EP = P, VP.
 We consider a family M of Markov kernels which is closed under o and contains

 M

 E. We say that Pi < P2 if and only if

 P2 = MPi for some M G M.

 M

 The relation < defines a pre-order in V. For instance, any Markov semigroup

 M = {Mt : t G IR+} containing E may serve.

 In the following examples, (O, S) is a Polish space bearing some additional
 structure as specified.

 Example 3.1. Let O be endowed with a closed partial order < and let
 M\ be the family of all upward Markov kernels, i.e., the kernels such that

 M(x9Ax) = 1, \/x9 with Ax = {y : ? < y}. This again yields the usual
 stochastic dominance order which, in our framework, is both a set dominance

 and a kernel dominance order. See Example 2.1 for references.

 Example 3.2. Let Ms denote the set of upward kernels on an Euclidean
 d-space, endowed with the Schur-ordering <s, which is a closed pre-order. See
 Example 2.5.
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 K. MOSLER and M. SCARSINI 267

 Example 3.3. Let O be a linear space and let .Mio be the set of kernels
 M such that

 x= I y M(x9dy) Vz G O. (3.4)
 Mio

 The ordering -< is called dilation ordering.

 More generally, let ? be a family of measurable functions O ?? IR. Let
 ?x be the degenerate probability measure at x. A Markov kernel M is called
 an ^-diffusion if, for all x9

 ex X T Mex = M(x9 ?), i.e.,

 F(?) < J <Ky) M(x9 dy) V<? G T. (3.5)
 We denote by M? the family of all .F-diffusions; we say that ? t is generated
 by T. It is easily seen that E is in M?9 and ? ? M belongs to M? whenever
 ? and M do. In the sequel, for the sake of brevity, we will write Mi for M jr..

 It is easy to show that M\9 Ms and Mio are special cases of .T7-diffusions:

 for Mi choose ?[ = {Ia : A upper set} or T\ = {f : f increasing}, analo-
 gously for Ms* The class Mio is generated by .Fio = {f : f convex} as well
 as by T[0 = {f : f affine}. We continue with two more examples, which are

 -Mio
 related to the dilation ordering -< .

 Example 3.4. Endow O with a closed partial order and a linear space
 structure and let T\\ = {f : f increasing and affine}. Observe that T\\ C .Fio,

 .Mio M\\
 hence .Mio C M\\\ the dilation ordering -< is contained in -< .

 Example 3.5. Consider the set Ti2 of functions on lRd which are convex

 and permutation symmetric, i.e. f(?) = f(??) for every x G IRd and every
 Alio <M\2

 permutation p. Obviously Pi -< P2 implies Pi < P2.

 The following theorem exhibits the equivalence between kernel domi-
 M

 nance -< and stochastic dominance -< for the above cases when M is an

 ^-diffusion. The result is due to Kamae, Krengel and O'Brien (1977) for
 k = 1, Nevius, Proschan and Sethuraman (1977) for k = 5, Strassen (1965),
 who generalized a famous theorem by Hardy, Littlewood and Polya (1967) and
 others, for k = 10 and 11, R?schendorf (1981) for k = 12. The cases k = 7,8
 and 9 are similar.

 Theorem 3.1.Let k G {1,5,7,8,9,10,11,12} and assume O = lRd, when
 Mk

 k^l. Then Px < TkP2 ?fand only ifPx < P2,
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 268 SOME THEORY OF STOCHASTIC DOMINANCE

 Mk
 Proof. Sufficiency is proved as follows. Let Pi < P2, f G F&. Then for

 some M G Mk,

 ? f??2= ? f????= ? ?^(y)M(x9dy)Pi(dx)> ? f dPu

 because of (3.5). Necessity can be shown by proper application of Strassen's
 (1965, Theorem 3) result. I

 When O is compact and ? contains only continuous functions, Theorem

 3.1 follows from a general result proved in Meyer (1966, chapter XI, T53): Let
 O be compact, let ? be a cone of continuous functions closed under maximum
 formation and containing the positive constants. Then Pi < TP2 if and only if

 Mjr
 Pi < P2.

 We observe that the cones T2 to T\ and Fe of Section 2 are not closed

 under the maximum operation, whereas Ti9 Ts, FV and T% are. As we see,
 ?4? ??$ ?4? ?4&
 -< , -< , -< and -< are orderings which are both set dominance and kernel

 dominance relations, whereas -< is an example which is not a set dominance
 relation, since Fio, the cone of convex functions, cannot be generated by any
 set of indicator functions. On the other hand, there exist examples of set
 dominance which are not kernel dominance relations, e.g. -<^3.

 In several important cases an .F-diffusion allows for a pointwise charac-

 terization of Mr-dominance (for proofs, see, e.g., R?schendorf (1981) when
 k = 5,10,11,12, Kamae, Krengel and O'Brien (1977) when k = 1. The cases
 k = 7,8 and 9 are proved similarly.).

 Theorem 3.2. Let k G {1,5,7,8,9,10,11,12}. Assume that O = lRd
 when k f \ and that Pi,P2 have ?rst moments when k = 10,11,12. Then

 Mk
 P\ -< P2 if &nd only if there exist two O-valued random variables X9 Y such

 thatC(X) = Pi, C(Y) = P2 and, P-a.s.,

 X < Y if k = 1,

 X<SY if fc = 5,

 l|x||>l|y|| if k = i9

 ?(??,?2)>?(??,?2)9 whereX = (Xi9X2)andY = (Yi9Y2), if k = 8,

 f(?)<f(?) if k = 99

 X = E(Y\X) if k = 10,
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 K. MOSLER and M. SCARSINI 269

 f(?) < ?(f(?)\?) for all f increasing affine, if k = 11,

 X<sE(Yn\X) if fc = 12,
 where Yi \ denotes the downward ordered random vector.

 Mi
 For given discrete distributions it is possible to check whether Pi ?< P%,

 i.e. P2 = MP1 for some M e Mi, as follows. In view of (3.1), (3.2), (3.3) we
 > 0 which fulfill

 ^ JTy = 1 Vi,

 have to search for numbers Kij > 0 which fulfill

 i

 plus a condition from Theorem 3.2 which corresponds to (3.4). For instance,
 when k = 1, this condition reads

 ]T Kij = 1 Vi,
 {j:si<sj}

 similarly (< being the Schur ordering <s in IR ) with k = 5. With k = 10
 and 11, the additional conditions are

 / j ^ij sj = si
 j

 and

 22 KijtPisj) ^ tl>(si) f?r all increasing affine ^
 i

 respectively. When O = IRd, these two cases can be easily solved by linear
 programming methods. For k = 10, Shaked (1980) gives a numerical example

 while Kemperman (1973) determines the p^-'s when P2 is a binomial and Pi
 is a hypergeometric distribution.

 4. Higher Degree Dominances. When O = IR the orders -< , -< ,
 ^ ?? ? ??

 < , -< , are equivalent and assume a very simple form: Pi -< P2 if and
 ^ A3 ^ A4 ~ ??
 only if

 FPl(x) > Fp2(x) VzGlR,
 or, equivalently,

 FPl(x) <Fp2(x) VxGlR,

 where, for i = 1,2, Pp. is the distribution function and FPi is the survival
 function associated with Pf. FPi(x) = P?{(-oo,z]}, FPi(x) = 1 ? FPi(x).
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 270 SOME THEORY OF STOCHASTIC DOMINANCE

 This is not the case when O = IRd, d > 1. Let (a,b) = xf=i(a?A).
 Define

 ?+(]Rd) = ?f : f(?) = ? f[(xi - a)11"1 ?(??) + c, where c G IR,
 ? ?-??,?) ?=?

 and ? is a positive measure on IRd such that / TT \??\ ?(??) < oo. >,

 Q-(Rd) =(f: f(?) = - / ?(** - a?0n"1 ?(?) + c, where c G IR,
 l -tao) ?=i

 and ? is a positive measure on IR such that / TT \?*\ //(dx) < oo. >,
 ?'?'.ti J

 For m > n9 we have ?+ D (7+ and (7~ D ??~.

 Let ? be a probability measure on (IRd, Bor(IRd)). Let FP and FP be the
 distribution function and the survival function associated with P, respectively:

 FP(x) = P{ ? (-00, xi]}9 FP(x) = P{ ? (?,?, oo)}.
 t=l t'=l

 Define

 J?(x) = / *p_1(t) dt, Fp(x) = / Pp-1(t) dt. ./(-??,?] J(x,oo)

 The following theorem holds.

 Theorem 4.1. Let Pi,P2 be probability measures on (lRd,Bor(lRd)).

 (a) Pi 3 ?? P2 if and only if ?%? (?) < ?%2 (x), Vx G lRd,

 (b) Pi < ??P2 if and only if P?(x) > P?(x), Vx G EA

 Proof, (a) Given any d-dimensional survival function FP9 the following
 representation holds

 TP(x) = [(n - l)!]-d / flitj - Xj)n-X dFP{t). (4.1)
 </(x,co) j=l

 If #t) = [(n - l)\]~d IIi=i(*i - ???G1 ?then ^e+, therefore P1 ? #P2 =?
 f7i(x)<^(x)Vx?R<l.
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 K. MOSLER and M. SCARSINI 271

 We have to prove the converse. If P^(x) < P^2(x), Vx G IRd, then

 / ?(?)?(?0< ? ?%(?)?{??), Jnd Jnd

 when ? is a positive measure. Then, by (4.1),

 / [(? - l)!]-d / f[(tj - ?,?)""1 dFPl (t) ?(??) <

 ? [(? - l)!]-d / f[(ts - ?i)""1 dFp2(t) M(dx)

 and, by Fubini's Theorem,

 [(n - l)!]-d / / ?(?,- - s,?)"-1 //(dx) dPp, (t) <
 Jnd 7(-oo,t) ?i

 [(n - l)\)-d f [ f[(ti - xt)?'1 //(dx) dPp2(t).

 The proof of part (b) is analogous. I

 The univariate case has been studied by Rolski and Stoyan (1974) and
 Rolski (1976) in the case of n G IN. Fishburn (1976), (1980a) employed frac-
 tional integrals to study the general case of n G [1, oo). The multivariate case

 with ? = 2 has been investigated by Bergmann (1978) and Mosler (1982),
 (1984). The bivariate case has been studied by Scarsini (1985).

 The conditions used to define classes G? and {7~ have an economic mean-
 ing in terms of multivariate risk aversion. We start with the univariate case
 and show how the utility functions in ?7~ can be characterized in terms of pref-

 erences among lotteries. The lotteries characterizing the class G? are defined

 recursively in terms of the lotteries characterizing C7~__i.

 Consider a decision maker whose utility functions f is in the class ?/["(1R).
 For every x G IR, for every h > 0 and for every pairs of lotteries

 Li(z) = ? with probability 1 Mi(#) = ? + h with probability 1

 she will prefer Mi over Li. Every decision maker whose utility function is in
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 272 SOME THEORY OF STOCHASTIC DOMINANCE

 ?/~(IR) prefers Mk over Lky Vfc G {1,..., ?}, where

 fLjb-i(a?) w.p. 1/2 ?MmW w.p. 1/2
 U(x) = { Mk(x) = {

 { Uk.i(x + h) w.p. 1/2 [ U-i(x + h) w.p. 1/2

 To be precise, we should make explicit the dependence of the lotteries upon
 h9 but we want to avoid cumbersome notation. Preference of M2 over L2
 corresponds to concavity of the utility function, i.e. to risk aversion (Pratt

 (1964)).

 The construction for the multivariate case is similar in its structure to

 the univariate one. We describe the bivariate case more extensively. Consider

 F G 0r(IR2). !* satisfies

 ? ? f(??9?2)<0 Vxi,x2 G IR, V/ii,/i2 > 0.
 5i=a?i S2=#2

 which is equivalent to the preference of lottery Mi over lottery Li, where

 f 0*1,32) w. p. 1/2
 Li(zi,:r2)= <

 [ (xi + h?9x2 + h2) w. p. 1/2,

 f(xi,x2 + h2 (xi + hi9x2

 t _ _ i2) w. p. 1/2
 U1(xux2)= {

 ,x2) w. p. 1/2,

 (where again the dependence on h has not been made explicit). This preference
 represents bivariate risk aversion (see Richard (1975)). Bivariate risk aversion
 is different and independent from risk aversion ? la Arrow-Pratt. It has nothing

 to see with concavity of the utility function and is defined only in terms of
 different combinations of commodities.

 A utility function in ??~(IR2) implies preference of M* over L^, Vfc G
 {1,.. . ,n}, where

 ( Lfc-i(zi,z2) w. p. 1/4

 Mk-i(xi + hl9x2) w. p. 1/4

 Mk-i(xi,x2 + h2) w. p. 1/4

 t L*-i(zi + hi9x2 + h2) w. p. 1/4

 Lfc(#i,#2) = ,
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 K. MOSLER and M. SCARSINI 273

 W?k(xi9x2) = i

 Mjb-i(a?i,a?2) w? ?? 1/4

 Ljb-i(fl?i + ?i,a?2) w. p. 1/4

 Lk-i(xi9x2 + h2) w. p. 1/4

 , M^-i(a:i + hX9x2 + h2) w. p. 1/4.

 In general, for the d-dimensional case, we have f G G ? 0& ) if and only

 if Mfc(x) is preferred to L*(x), Vx G Md9 Vh G IR+ \ {0}, V* G {1,..., ?}. The
 lottery Li(x) has 2d~1 equally likely outcomes z G ? (where z G Z if and only
 if 2t? = either a?? or ? i + hi and the number of Z{ = x? + ?; is even); the lottery

 Mi(x) has 2a"1 equally likely outcomes w G W (where w G W if and only if
 wt? = either ? i or #? + hi and the number of W{ = ?; + hi is odd). L?(x) has
 2d equally likely outcomes each of which is a lottery: either L^_i(z), z G ? or

 Mfc_i(w), w G W. Mfc(x) has 2d equally likely outcomes each of which is a
 lottery: either M?-i(z), zgZor L?_i(w), w G W.

 It is worth noticing tha.t, if two lotteries that we are comparing are

 marginalized (i.e. if one of the commodities is omitted in the lotteries), then
 they become equal. The reason for using the term risk aversion for the above
 preferences among lotteries is that the lottery L& always contains the worst
 possible outcome and it is reasonable to assume that a risk averter wants to
 avoid it.

 For an investigation of further multivariate risk postures and stochastic

 dominance with respect to them, see Mosler (1987).

 Necessary conditions can be established for n-th degree stochastic domi-
 nance. These conditions, which involve the moments of the distributions, have

 been established by Fishburn (1980b), O'Brien (1984) in the univariate case,
 and by O'Brien and Scarsini (1991) in the multivariate case.

 5? Preservation Under Transformations. In this section we will

 consider random variables with values in (O',^'), which are transformations
 or compositions of other random variables with values in (O,<5). Given a
 random variable X9 we will denote C(X) by ??.

 Given a measurable tranformation h : (O,?) ?? (O7,^7), we want to
 determine conditions on ? and T1 under which

 ??<??? implies Ph(x) <T'Ph{Y). (5.1)

 First assume that O is partially ordered, O7 = IR, h : O -> IR is increasing
 and ?1 = .Fi(IR). If ? = ??9 then the implication is well known. In the case
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 ?1 = ^i(lR), Marshall (1991) gave necessary and sufficient conditions on ?
 for the validity of (5.1). For general O7,h9T9T9 we have the following result.

 Theorem 5.1. Let f o h G T, whenever f G ?1. Then (5.1) holds.

 The proof is obvious. We list several examples in which the condition
 of Theorem 5.1 is met (see also Mosler (1982, pp. 78 ff.)). O and O7 will be
 endowed with a partial ordering and/or a linear structure as necessary.

 Example 5.1. Consider an increasing transformation h : (O, <) ??

 (O7,<7),^ = ^?(O),^7 = ^?(O7).
 Example 5.2. Let O7 = IRd with the usual ordering, let h be a convex

 transformation O ?? IR and let ? = /??, ?1 = Tu.

 Example 5.3. Let O = ??td, O7 = IR,

 F13 = {f G CX(IR ) : ?f/dxj is nonnegative, decreasing and convex for all j}.

 A differentiable function is in T\z if and only if it is in Q^?Si) with respect to

 each argument Xj. !F\z includes the utility functions which are risk averse in
 every attribute with increasing second derivative (cf. univariate third degree
 stochastic dominance, Whitmore (1970)). If ? = !Fis9 T1 = Ti?>9 and h G ??$9
 then the conditions of Theorem 5.1 are satisfied.

 Example 5.4. Again, let O = IRd and O7 = IR. A univariate utility func-
 tion f G C2(Md) has decreasing absolute risk aversion (DAR?) with respect
 to Xj if and only if ??/?xjlog(?<^(x)/oxj) is decreasing in Xj. Let T14 de-
 note the set of those functions which have DAR? in every argument Xj. With
 ? = ??\9 h G ??\ and ?1 the set of univariate DAR? utility functions, (5.1)
 holds. For d = 1, see Vickson (1977).

 Let O be a linear space, ? a set of functions O ?? IR. ? is called scale
 invariant if V<? G ?, Va > 0, fa G ?', where fa(?) = f(a?). ? is trans-
 lation invariant if \/f G T9 V# G O, f? G T9 where f?(?) = f(? + y). For
 instance, it is easy to see that Tj is translation and scale invariant when
 j G {1,2,3,4,5,10,11,13,14}, it is scale but not translation invariant when
 j G {6,7,12} and is neither translation nor scale invariant when j G {8,9}.

 Theorem 5.2. Assume that ? is scale invariant and a > 0. Then

 ??<*?? implies ?a?^?a?-

 Proof. The result follows from Theorem 5.1.

This content downloaded from 134.95.159.232 on Tue, 16 Aug 2016 11:20:27 UTC
All use subject to http://about.jstor.org/terms



 K. MOSLER and M. SCARSINI 275

 Theorem 5.3. Assume that ? is translation invariant, that X and ? are

 independent and that Y and V are independent. Then

 ??<???, Pz^Pv implies PX+Z<T PY+V.

 Proof. Let f G T. For every z9x9 we have f?9f? G T. Hence, by
 ??<t??,

 ?f?(?) dPx(x) < j f?(?) dPy(x) = j f?(?) dPY(x)9

 J f dPx+z = J j f?(?) dPx(x) dPz(z)

 < f I' F?(?) dPY(x) dPz(z)

 = J J f?(?)???(?)???(?)

 < ? ? f?(?)???(?)???(?)

 = /f ???+?>

 where the last inequality stems from Pz -< TPy. I

 Corollary 5.1. Assume that ? is scale and translation invariant, Xi9...,
 Xd are independent random variables and Yi,..., Yd are independent, too. Let
 a?,..., ad > 0, ? G IR. Then

 Px?^Py? i = !,...,<* implies ??^aiXi ?^??+?^?iYi?

 The proof of Corollary 5.1 is obvious. Analogous results may be obtained
 for dependent random variables when orderings of conditional distributions
 are employed.

 Theorem 5.4. Assume that ? is translation invariant. Let ??\? and
 ??\? denote proper versions of the conditional distributions ofX and Y given
 ? = ?; then

 Px\z<*Py\*Vz implies ??+?<t??+?.
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 Proof. For all f ? J7,

 J f dPx+z = J J f?(?) dPx\z dPz(z)

 < j j f?(?)???\2???(?)
 = ?fa??+?. ?

 Similarly, Theorem 5.4 extends to the dependent case: If Px\z=z ?< T??\?=?

 Vz and ??\?=? < ^??\?=? Vy, then Px+z ^ ^??+?- More preservation results
 are given in the papers by Arnold (1991), Eaton and Perlman (1991) and Mar-
 shall (1991).

 6. Joint and Marginal Dominance. For i = l,...,d, let (?li9Si) be
 a measurable space, endowed with some additional structure (see the above
 examples), and let (O,5) = (xf=^?,0t=1?>i). If P G V(?9S) has marginals
 Pi,...,Pd,wewritePGr(Pi,...,Pd). Let P9Q G V(?l9S)9P G T(PU .. .,Pd),
 Q G r(Qi,..., Q?). For some ? consider

 P<T{^Q (6.1)

 and

 Pi<n?i)Qi, i=l,...,A (6.2)

 Theorem 6.1. For f G ./(O;) define f(??9.. .,x?,.. .9Xd) = 0(s,?), (a?i,...,
 #?> - - ->#d) ? O. Assume that f G ^(O), whenever f G ./(O;), i = 1,.. .9d.
 Then (6.1) implies (6.2).

 Theorem 6.2. Assume that ^^ isa set dominance ordering, -< * = ?< ,

 and that pro^_1(A) G *4(O) whenever A G ?(O?), i = l,...,d (where pro?
 denotes the i-th projection). Then (6.1) implies (6.2).

 The proofs are obvious. It may be easily checked that Aj meets the
 assumptions of Theorem 6.2 when j G {1,2,3,4,6} and that the hypotheses
 of Theorem 6.1 are satisfied when j G {10,11,13,14}. Hence these orderings
 are preserved under marginalization.

 When a suitable regularity condition is assumed, ra-th degree stochastic
 dominance is preserved under marginalization, too. The condition that insures
 the preservation is called "margin-regularity". For details we refer to O'Brien
 and Scarsini (1991).
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 The reverse implication ((6.2) =>- (6.1)) is in general not true. However,
 there exist some results if ? and Q are both product measures and some
 weaker results when ? and Q have the same dependence structure. The latter
 case will be presented in detail.

 Theorem 6.3. Let ? = Pi ? ... ? Pd, Q = Qx ? ... % Qd. Then (6.2)
 implies (6.1), when ? = Tj9 j G {1,2,3,4,10,11,13,14}.

 Proof. Proofs for all j can be found in Mosler (1982). If j G {1,2,3,4}
 and Pi(Bi) = Qi(Bi) for all i, the theorem follows from Theorem 6.4 below. |

 A function C : [0, l]d ?> [0,1] is called a copula if it satisfies the following
 properties

 (i) C(xi9..., Xd) = 0, if at least one Xi = 0,

 (ii) (7(1,...,1,&*,1...,1) = a;*,

 (iii) ?5=?1?.-?1[-=?||?7(??,...,???)>0 V*f-<yt? i = l,...,d.
 (see Sklar (1959), Schweizer and Sklar (1983)).

 A relation on a space O is called a (strict) weak order if it is negatively
 transitive and asymmetric. Let -< be a strict weak order. Let b ^ a if -?(a -< b)
 and -?(6 -< a). Then ~ is an equivalence relation. Let a ?< b if a -< 6 or a ~ 6.

 Let (O,???(O),^) be a weakly ordered Polish space (WOPS), endowed with
 the Borei s-field. For ? G O, define Ax = {y : ? -< y} and let ?? = {A^ : x G O}.
 Then ? is an increasing class of measurable subsets of O, i. e., for x9y G O,
 either Ax C Ay9 if y -< x9 or A^ D Ay9 i? ? <y.

 For i = 1,..., d, let (O,, ???(O,), -?,?) be a WOPS, and let B{ be the in-
 creasing class of subsets induced by -<?. Since every weak order -<t- on a space
 O; induces an increasing class B% and vice versa, we can indicate a WOPS also

 by (O,?, ???(O?), Bi). Let ? = (/?i,..., #d). Let ? be a probability measure on

 (??=?O???=???*(O?))> ? ? r(Pi,...,Pd). Then there exists a copula C$
 such that, for Ai G #? (i = 1,..., d),

 P(Ai x ... x Ad) = C^(Pi(Ai),...,Pd(Ad)).

 Define P?(/??) the range of A h P%(A)9 A G #?. Then Cp is unique on
 xf=1P?(f??). Therefore C? is unique on [0, l]d if P?(#?) = [0,1], for i = 1,..., d.

 Given Pi,..., P??, Cp uniquely determines P(B) for every P G (8)%=\s(?%))
 where s(?2?) is the s-field generated by B{. Therefore, if s(??) = ???(O??),
 i = 1,..., d, then P is uniquely determined by Cp9 Pi,..., P<?. Details can be
 found in Scarsini (1989).
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 Theorem 6.4. If xf=1Pi(Bi) = xf=1Qi(Bi), C| =- C%, and ? = Tx (the
 class of increasing functions), then (6.2) implies (6.1).

 Proof. Call U(?) the class of upper sets in O. We have to prove that
 P(A) < Q(A) VA ? U(xf=l?li). We start considering the case of P?(B?) =
 Qi(Bi) = [0,1], i = 1,..., d. Define

 Gf(x) = Pi{y:y<x}, i = l,...,d

 and

 Gp(x) = (Gf (xi),..., Gp(xd)), ?,? ? O,?, i = 1,...,d.
 Gp: ??=1O,? -? [0, l]d. If we write GP(A) = {y : y = Gp(x), ? ? A}, then

 P(A) = P{x : ? ? A} = ??(??(?)),

 where ? ? is the measure induced by Cp on ([0, l]d, Bor([0, l]d)). Since Cp
 is unique on (xf=1Pi(Bi)), then ?? is unique on ?t=1?r(Pj(?i)). If A ?
 U (xf=1???), then GP(A) e U([0, l]d). From (6.2) it follows that

 Gp(x)>Gf(x) Mxeiii t = l,...,d (6.3)
 and therefore

 GP(A) C GQ(A).

 Since ?? = ?Q, then

 MGP(A)) < mq(G?(A)),

 that is P(A) < Q(A).

 When P,(#,) ^ [0,1], even if A is upper, generally GP(A) is not. The
 proof can be adjusted to encompass also this case. For A ? ?/(xf_1(??l)), let

 Gp(A)= xPi(Bi)\Gr(A)
 t=l

 and let

 G?t(A)= (j_ B.
 BnGp(A)=Q
 ?eW([o,i]d)

 If Pi(Bi) = [0,1], i = 1,.. .,d, then G?(A) = GP(A).

 Let ? = ? o (Gp)"1. If Pi(Bi) f [0,1], then 3s9t G [0,1] such that
 Cp is not unique on [0,1]4""1 ? (s9t) and ? concentrates positive mass on
 some subset of [0, l]^1 ? {t}. Consider the measure ? on ([0, l]d,Bor([0, l]d))

This content downloaded from 134.95.159.232 on Tue, 16 Aug 2016 11:20:27 UTC
All use subject to http://about.jstor.org/terms



 K. MOSLER and M. SCARSINI 279

 such that ? = ? on [0,l]d ? x ([0,1] \ (s9t)) and the mass concentrated by
 ? on [0, l]^""1 x {t} is uniformly spread by ? on the right over the interval
 [0,11a-1 ? (?, t).

 Repeat the procedure for all the points t where the phenomenon appears

 (the discontinuity points of Gf ) and for all the coordinates 1,.. .,d. Eventu-
 ally, (in a countable number of steps) a measure v* with continuous marginals
 on [0, l]d is obtained. The distribution function corresponding to v* is a copula

 of ? with respect to ? (see Schweizer and Sklar (1983), Scarsini (1989), for
 this construction), and therefore

 u*(Gp(A)) = v(Gp(A)) = P(A).

 Since xf=iPt(#j) = xf=iQi(Bi), then the distribution function associated to
 v* is also a copula of Q with respect to B. Therefore, if (6.2) holds, i.e. if
 (6.3) holds, then G?(A), Gg(A) ? U([0, l]d) and

 g?(A) C Gg(A),

 hence

 **(G?(A)) < ^(Gg(A)),
 i.e.,

 P(A) < Q(A) VA <= U( ? ili). I
 t=l

 The result was proved by Scarsini (1988b) for the case O; = IR, with the
 natural order.

 Of course, since orderings -< , -< , -< are finer than -< on R ,

 but they are equivalent on IR, it is clear that, if Cp = Cq , then (for j = 2,3,4),
 Pi ^ Qi Vi = 1,..., d, implies (6.1). ~ Aj

 7. Dominance for Stochastic Processes. Some dominance condi-

 tions for stochastic processes can be embedded in the framework previously
 described. We can consider a stochastic process as a random variable with val-

 ues in a suitable functional space. If we endow it with a topological structure
 that makes it Polish, then the above results for Polish spaces apply. In this sec-

 tion we will be concerned with sufficient conditions for some of the orderings.

 In particular we will try to express these conditions in a way that is natural for

 stochastic processes, for instance through the marginal laws of finite dimen-

 sional vectors drawn from the processes. For instance, let X = {Xn9n G IN},
 ? = {??,? G IN} be two discrete-time real valued random processes. Let
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 Pi,Pi ? P(RN,Bor(]RN)), Px = ?(X), P2 = ?(Y). Consider the following
 two conditions

 (a) Pi^P2

 (b) P\<QdP\ VdGlN, ViGlNd,

 wherei = {ii,...,id}?K^^
 For suitable choices of ? and Gd, condition (b) implies (a). For instance,

 when ? and Gd are the classes of increasing functions, the implication has
 been proved by Kamae, Krengel and O'Brien (1977), where the more general
 case of processes with values in a POPS was studied.

 For the case of real valued discrete time stochastic processes, we will give
 a different proof of Kamae, Krengel and O'Brien's result. Our proof has the
 advantage of working for other types of set dominance, and not only for the
 usual stochastic ordering. Kamae, Krengel and O'Brien resort to Theorem
 3.2. Such result does not hold for all set dominances, so, in order to achieve a

 general result, we have to work directly on the classes Aj.

 Theorem 7.1. Let ?, Y he discrete time real valued stochastic processes,

 with ?(X) = P1} ?(Y) = P2, C(XU ...,Xd) = Pt, ?(Yi,..., Yd) = Pf. If, for
 A = Ai, ?2, ?3, A4, ?6,

 ? A(Rd) P??^P? Vd? 1?+, (8.1)
 then

 **w*? (8?2)

 Proof. Let A G ?4(?,?), let Ad be the projection of A on lRd and let Ad
 be the cylinder generated by Ad (Ad = Ad ? IR ? IR -..). Then Ad G *4(1RK).
 By (8.1), Pi(Ad) < P2(Ad). We have Ad D A and IAa \ IA. Therefore by
 the Lebesgue monotone convergence theorem, Pi(Ad) \ Pi(A) and P2(Ad) \
 P2(A), therefore Pi(A) < P2(A). Since this is true for any A G A9 we obtain
 (8.2). |

 Bassan and Scarsini (1991) proved the implication for the classes of con-
 vex, concave, increasing convex and increasing concave functions, but for these
 results an assumption of continuity of the functions in ? must be added. Since
 these orderings cannot be defined in terms of any set dominance, then a differ-

 ent argument must be used to prove the result, namely the approximation has
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 to be carried out on the functions of the classes ? and Gd<> rather that on the

 probabilities of some sets. We refer to Bassan and Scarsini (1991) for details.
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