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Summary. The expected utility analysis of decision under 
risk needs information on the alternatives and on the 
decision maker's preferences which in many practical 
situations are difficult to obtain. This paper presents a 
procedure for choosing between multiattribute risky 
alternatives when the probabilities of outcomes are 
known, the utility function is general multilinear (i.e., 
can be decomposed into sums and products of univariate 
utility functions), and there is some partial information 
on univariate utilities (viz. increasingness) and arbitrary 
partial information on the scaling coefficients. Pairwise 
comparisons in the set of alternatives yield a subset 
which is efficient under the given partial information. 
Additive and multiplicative utility functions are special 
cases of the multilinear one. The paper gives particular 
attention to linear partial information (LPI) on coeffi- 
cients, which is obtained by standard assessment proce- 
dures. The approach can be combined with dominance 
procedures which use other partial information as LPI 
on probabilities. 

Zusammenfassung. Betrachtet werden Risikoentscheidun- 
gen bei mehreren Attributen. Ftir die Bestimmung des 
erwarteten Nutzens der Alternativen ben6tigt man Infor- 
mationen fiber die Pr~iferenzen des Entscheidungstr/igers, 
die in konkreten Anwendungen hfiufig nut schwer zu 
beschaffen sind. Im folgenden Artikel wird ein Verfahren 
vorgestellt, mit dem man bereits Entscheidungen treffen 
kann, wenn die Risikonutzenfunktion allgemein multili- 
near ist (d. h. in Summen und Produkte von univariaten 
Nutzenfunktionen dekomponiert werden kann) und eine 
bestimmte unvollst/indige Information tiber die univaria- 
ten Nutzenfunktionen (n~imlich monotones Wachstum) 
und beliebige unvollstfindige Information fiber die Ska- 
lenfaktoren vorliegt. Aus Paarvergleichen in der Menge 
der Alternativen erh~ilt man eine beztiglich der gegebenen 
Information effiziente Teilmenge. - Additiv bzw. multipli- 
kativ dekomponierte Nutzenfunktionen ergeben sich als 
SpezialfNle der multilinearen Form. Der Artikel behan- 
delt eingehend die lineare partielle Information (LPI) tiber 
die Skalenfaktoren, die sich aus den fiblichen Verfahren 

zur praktischen Ermittlung der Nutzenfunktion ergibt. 
Der Ansatz kann mit Dominanzverfahren kombiniert 
werden, die auf andere Arten unvollst~tndiger Informa- 
tion (etwa auf LPI fiber die Wahrscheinlichkeiten) zurtick- 
greifen. 
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1. Introduction 

The expected utility analysis of a decision under risk needs 
information on the alternatives and on the decision 
maker's preferences which in many practical situations is 
difficult to obtain. Therefore, many decision procedures 
have been proposed which are based on partial informa- 
tion only. In particular, every interactive decision pro- 
cedure employs partial information in a sequential way. 
The purpose of this paper is to present a new procedure for 
choosing between multiattribute alternatives when the 
probabilities of outcomes are known. It is assumed that 
the utility function can be decomposed into sums and 
products of univariate utility functions and that there is 
some partial information on the univariate utilities (in- 
creasingness) and arbitrary partial information on the 
scaling coefficients. 

In multiattribute utility theory (MAUT), choice be- 
tween alternatives X =  (XbX2 . . . .  Xk) is analyzed where 
the Xi are real-valued random variables. Here, X is 
called a (risky) alternative, or a prospect, a realization 
x = ( x b x 2 , . . ,  xk) of X is called an outcome or a conse- 
quence, every i@{1,2.. .k} is called an attribute. In the 
sequel we speak of alternatives, outcomes, and attributes. 
A decision maker (DM) is supposed to choose between 
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alternatives according to expected utility Eu (X1, X2,.. �9 X~) 
with some k-variate utility function. MAUT decision 
methodology proceeds as follows: First, some utility 
independence properties of the DM's weak preference on 
alternatives are assessed. They yield a particular de- 
composition of the k-variate utility function u into sums 
and products of utility functions which have less argu- 
ments. Second, these utility functions plus a number of 
scaling constants are fully assessed by asking questions to 
the DM. Finally, Eu(X1,X2 . . . .  Xk) is evaluated for every 
possible alternative. 

In the sequel we assume that the DM's k-variate utility 
function u(xl . . . .  xk) can be decomposed into sums and 
products of k univariate utility functions ul (xl) . . . .  u~(xk) 
and real coefficients. With other words, u has a general 
multilinear decomposition. E.g., when k = 3, u(xb x2, x3) 
= O~IUl(X1) @ 0~2U2(X2) @ a3U3(X3)-b alZUl(X 1)u2(X2) 
_c O~23//2 (X2)//3 (X3) -~- 6r (X1)//3 (X3) @ a123//1 (X1)//2 (X2) U3 (X3). 
A sufficient condition for this is that each attribute is 
utility independent of the set of remaining attributes; see 
Keeney and Raiffa (1976, p. 293), Fishburn (1973), and 
Farquhar (1975). The additive decomposition 
u(xl,...Xk)=Y~otiui(xi) and the multiplicative decompo- 
sition u(xi , . . ,  xk) = Fi aiui(xi) are special cases. 

In most practical applications reported in the litera- 
ture, additive (and sometimes multiplicative) decomposi- 
tions have been used. But the additive model cannot 
mirror preferential dependencies between attributes, and 
the multiplicative model is similarly inadequate as it 
shows two special kinds of dependency only, viz. bivariate 
risk aversion and proneness (Richard 1975). The multili- 
near model is much better adapted to practical situations. 
However, to specify the k-variate multilinear utility 
function of a given DM, k univariate utility functions and 
up to 2 k -- 1 coefficients have to be assessed, which can be 
a tedious if not impossible task. Instead, we propose to use 
partial information on coefficients and incompletely 
specified univariate utility functions. An alternative which 
proves to be inferior to another one with respect to every 
utility function of this incomplete specification may be 
removed from the set of alternatives. Pairwise compari- 
sons in the set of alternatives yield a subset which is 
efficient with respect to the given partial information. 
Then, it may be decided whether to assess more informa- 
tion on the utility function or to choose by some other 
device from the efficient set. The additional information 
may be complete (all coefficients and univariate utility 
functions are known) which results in a simple expected 
utility maximization, or, the information may be partial 
again which yields an efficient set which is not larger and 
possibly smaller than the previous one. 

In this paper, by information or partial information we 
simply mean a set of utility functions. Given some partial 
information, we say that alternative Y dominates alterna- 
tive X with respect to the information if and only if the 
expected value of utility differences is non-negative, 
E[u(Y) -- u(X)] > 0, for all utility functions u in that set, as 
far as the expected value exists. 

The concept of partial information has been intro- 
duced to expected utility in a variety of ways. Fishburn 
(1964, 1965) addresses the problem of comparing alterna- 

tives when there is full information on the utility function 
but only partial information on probabilities of possible 
outcomes, viz. inequalities between probabilities and 
sums of probabilities. He presents a method (called 
"method of equating coefficients") to derive dominance 
conditions in terms of utility scores under this informa- 
tion. Fishburn's approach has been revisited and reinvent- 
ed by several succeeding authors, among them Hannon 
(1981), Bromage (1982) and others. Linear partial infor- 
mation (LPI) on probabilities with full information on 
utilities has also been investigated by Kofler and Menges 
(1976), Ehemann (1981), and Kofler et al. (1984) who 
maximize the minimum expected utility (minimum with 
respect to the given information). Weber (1987) gives a 
survey of decision making with partial information. 

With multiple attributes, a general approach to MAUT 
via efficient sets has been proposed in several papers by 
White and Sage (White and Sage 1980; Sage and White 
1984). They employ graphtheoretic methods and indicate 
that the approach may be used for LPI on both probabili- 
ties and coefficients of an additive utility function. 
Jacquet-Lagr~ze and Siskos (1982) assume an additive 
decomposition and present an approach (based on linear 
regression) to determine not only one utility function but a 
set of functions which is consistent with the assessed 
information. Korhonen et al. (1984) and K6ksalan (1989) 
use cones of inferior alternatives in an interactive way. 
Kirkwood and Sarin (1985) and Hazen (1986) present 
decision procedures which rely on known univariate 
utilities and LPI about utility coefficients. While Kirk- 
wood and Sarin (1985) do not go beyond additive utility 
decompositions and some special cases of LPI, Hazen 
(1986) also includes multiplicative utilities and general 
LPI. 

Dominance of single-attribute alternatives with re- 
spect to all increasing utility functions has been investigat- 
ed in an economic context by many authors starting from 
Hanoch and Levy (1969) and Hadar and Russell (1969); 
see also Vickson (1977) who employs some kind of linear 
information on utilities. For recent references in a multiat- 
tribute setting, see Mosler (1984) and Scarsini (1988). In 
connection with LPI on probabilities (but not on utility 
coefficients), related dominance results have been present- 
ed by Pearman and Kmietowicz (1986) and Keppe and 
Weber (1990). 

In this paper partial information about general multili- 
near utility functions is investigated. Full information on 
probabilities is assumed. No information on univariate 
utilities is used besides increasingness and standardization 
with respect to two reference outcomes, while partial 
information on coefficients is arbitrary. (Closed form 
results, however, are mainly obtained for LPI concerning 
the coefficients.) The assumption of increasing univariate 
utilities is motivated by the fact that in almost all 
reasonable circumstances it will be possible to rank-order 
the levels of every single attribute while in many cases 
assessing univariate cardinal utilities may be difficult or 
costly. Section 2 introduces the general multilinear utility 
decomposition and the main cases of partial information 
that can be obtained by the usual assessment procedures 
(comparisons of lotteries). Section 3 deals with standard 



K. Mosler: Multiattribute utility functions, partial information on coefficients, and efficient choice 89 

additive decompositions and exhibits sufficient and 
necessary conditions for dominance of alternative Y over 
alternative X. They are formulated in terms of certain 
probabilities of Y and X. Section 4 attacks the general case 
of dominance conditions for multilinear utilities (includ- 
ing multiplicative ones), and Sec. 5 concludes the paper. 

more, viz. that at least every pair {i,j } of attributes is utility 
independent from K \  {i,j}; see Keeney and Raiffa (1976, 
pp. 289), Fishburn (1973), Farquhar (1975). E.g., the 
utility function 

u(xb  x2, x3) = 5/6 X1 - -  1/6 X2X3 -1- 1/3 X1X2X3, X i E [0, 1] 

2. Multilinear utility functions and the assessment 
of partial information 

The general multilinear decomposition is given by 

/-/(X1, X2, . . .  Xk) = 2 aI  I - I  bli(Xi)' (2.1) 
ICK iEI  
I~0 

where the sum extends over all subsets of attributes 
I C K = { 1 , 2  . . . .  k} which are not empty, ai  denotes a 
multiindexed constant, ai  = air.., i m when I = {il . . . .  im},the 
ui are increasing functions, bli:Ci--' ]R, and the G are 
intervals. If there exist two fixed outcomes a = (ab. . .  ak) 
and b = (bl, .:. bk) with 

ui(ai) =0 ,  ui(bi) = 1, i =  1, ... k (2.2) 

u(a) = O, u(b) = 1 (2.3) 

Eq. (2.1) is called a standard multilinear decomposition of 
U. 

Two special cases are important: the standard additive 
decomposition k 

b / (Xl '  X2'  ' "  Xk) = Z aibli(Xi)' ( 2 . 4 )  

i = 1  

where a i - -  0 has been chosen in (2.1) for III > 1 (i.e., when 
I has more than one element) and the standard multipli- 
cative decomposition 

b/(X1, X2, . . .  Xk) = 2 aibli(Xi) 
iCK 

represents a preference relation which cannot be repres- 
ented by a multiplicatively decomposed utility function. 
(Note that {2, 3} is not utility independent from {1}.) 

However, to specify a general multilinear utility func- 
tion completely, k univariate utility functions and 2 k -  1 
constants have to be determined. This is normally done by 
offering special pairs of alternatives to the DM and asking 
her to make hypothetical choices. By 

Pl �9 �9 �9 Pn ] F x"  
, (1) . ( 1 ) ,  { (kXl n),...Xk))(n.~ 
I, Xl , . . . ~ k  ) �9 " - 

we denote the alternative which yields outcome 
(x~i),... x~ )) with probabilitypi, i = 1 . . . .  n, and by (b j, a - j )  
we denote the outcome with levels bi in all attributes 
i E J ,  ai in all attributes i @ - - J  where - - J = K \ J .  From 
(2.1), (2.2), and (2.3) follows that 

u(bj ,  a j) = Z aI' J C K,  J =/= O, (2.6) 
lCJ 

and, in particular, with J =  {j} 

u(bj, a- j )  = aj, j E K. (2.7) 

Therefore, if the DM prefers (bi, a- j )  for sure at least as 
(bL, a--L) for sure we get 

a i >  ~ '  aI. (2.8) 
ICJ ICE 

and, in particular, with J = { j } ,  L {l} 

+ fl / 1ii-2 I-I <ui(x,),  (2.5) 
ICK i@I 

IIk > 2  

where ai=fl rzf-~ 1-[ a/ for  [ I i >  1 has been chosen in 
iEI  

(2.1). Observe that (2.5) specializes to (2.4) when fi = 0. 
The class of additive utility functions is limited to 

situations where the DM perceives no interaction between 
the attributes. The multiplicative class is closely related to 
that since each strictly multiplicative decomposition (2.5) 
with five0 can be written as a product u(xl . . . .  x , ) =  
I~ Wi(Xi) with some wi, hence the logarithmic utility has an 
additive decomposition. The general multilinear form 
(2.1) is much better suited to mirror a given preferential 
dependency between the attributes. To yield a multilinear 
decomposition (2.1) we have to verify that in the DM's 
preference relation every single attribute i is utility 
independent from the set of remaining attributes K \  {i}. 
To yield a multiplicative decomposition (2.5) we need 

aj >_ al. (2.9) 

If she is indifferent between the alternatives 

1 and Fx, : 
Fy, : (b j ,  a j )  a b 

for some 3, 0 < fi < 1, we conclude 

= a. (2.1o) 
ICJ 

Also, if the DM is indifferent between 

F f z '  ( c j ,  x * - j )  (aj, x*  j )  (bj, x*-j)  

(where cj, aj, and bj refer to thej-th attribute and x*-j to the 
rest) for some cj, x*-j, and fi, 0 < c~ < 1, we have the same 
indifference for a- j  in place of x*-j. Therefore, 
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u(cj, a_j) = aja. 

Since u(cj, a-j) = ajuj(cj), we get 

uj(cj) = a (2.11) 

if aj > O. Similarly, we may have assessed u(ch, a-h) = abe 
for some e. If the DM prefers (cj, a-j) for sure at least as 
(ch, a-h) for sure we get the inequality 

information an alternative Y dominates an alternative X if  
and only i f  for all zi, i = 1, 2 . . . .  k, 

k 

inf ~ aic~i(zi) >_ 0 (3.1) 
a C A  i = l  

holds, where c~i(zi) is defined by 

c~i(zi) = P(Yi >_ zi) -- P(Xi > zi). (3.2) 

aaj > eah (2.12) 

(with known coefficients c~ and e). 
It should be noted that information of inequality type, 

(2.8), (2.9), and (2.12) is much more easily assessed than 
that of equality type (2.10) and (2.11). 

In principle, from equalities like (2.10) and (2. l l )  the 
univariate utilities and the constants can be determined up 
to any desired accuracy; see Keeney and Raiffa (1976, pp. 
277). In practice, this approach can be tedious if not 
impossible due to limitations of the DM's response. The 
DM may (1) not have the time to answer all the 
hypothetical tradeoff questions needed for a complete 
assessment. Also, she may (2) not be willing or (3) not be 
able to respond to certain questions. (4) if there are several 
decision makers, they may agree on some questions but 
disagree on others. Instead, we propose to collect and use 
information of type (2.8) to (2.12) in a sequential way. At 
every step of the procedure the information which has 
been collected so far defines a class of utility functions u. 
An alternative which proves to be inferior to another one 
with respect to every utility function in this class may be 
removed from further consideration. Pairwise compari- 
sons in the set of alternatives yield a subset which is 
efficient with respect to the given information. Then, it 
may be decided whether to assess more incomplete 
information (and use it in a next step) or to assess 
complete information or to choose by some other device 
from the efficient set. 

3. Partial information on an additive utility 

In this section, partial information on the DM's utility 
function u is assumed as follows: First, u has a standard 
additive decomposition, i.e., (2.2) to (2.4) hold for some 
given fixed outcomes a and b. Second, all univariate 
utilities are increasing. Third, the unknown coefficients ai 
are positive. Fourth, the vector of coefficients 
(Or1, a2, . . .  a k )  belongs to some given set of coefficient 
vectors. Dominance criteria are presented with respect to 
this information. Specific coefficient sets of practical 
interest are investigated in detail. 

Theorem 1 (Additive case): Assume that the utility function 
has a standard additive decomposition with u i ( a i ) = O  , 

ui(bi) ~ l for two fixed outcomes (a~ . . . .  ah) and (bl . . . .  bh), 
further that univariate utilities are increasing and the 
coefficient vector (ab a2,.., ah) belongs to some given 
nonempty set A, ai>O for all i. With respect to this 

Theorem 1 is not proved here since it will appear as a 
special case of Theorem2 below. The assumption of a 
priori positive coefficients at seems natural in applica- 
tions; however, it can be easily dropped (cf. Theorem 2). 
Observe that c~i denotes the difference of two marginal 
cumulative distribution functions. So, our dominance 
criterion (3.1) states that the weighted sum of these 
differences, weighted by any admissible coefficients, must 
be nonnegative everywhere. 

With vectors a=(cq , . . . ah )  and ~(Z) ( ~ I ( Z 1 )  . . . .  
c~k(zh)), a '  denoting the transpose of a, (3.1) can be written 
as ~(z)a" > 0 for all a EA or, equivalently, 

a(z) e A*, (3.3) 

where A * is the polar cone of A, A * = {fl @lRh[fla" > 0 for 
all a@A}. 

In order to compare two given alternatives X and Y 
when A is some set of coefficient vectors, we have to 
compute c~(z) and to check optimal values of the program 
in (3.1) for every z = (z~ . . . .  zh). (If X and Y have finitely 
discrete distributions then c~(z) assumes a finite number of 
values, and the program (3.1) must be solved at finitely 
many z only.) Alternatively, we may compute A* and 
check (3.3) for every z. In the case when A is defined 
through linear inequalities 1, 

A = { a l a W >  v} (3.4) 

with some k X r matrix W and right hand side vector v, the 
programs are linear programs. IfA has form (3.4), we say 
that A is a linear partial information (LPI) on coefficients. 
If in addition v = 0, A is called a conicalLPI. In particular, 
the assessment of (in)equalities of types (2.6) to (2.12) 
from actual preference statements of the DM produces 
some linear information A. If (2.10) is not used, the 
information is conical linear. This is a most relevant case. 

In the conical case, the polar cone is A * =  
{yW']~>0}; see, e.g., Bazaraa and Shetty (1979). The 
following lemma on conical linear information yields 
dominance criteria for a number of practically important 
c a s e s .  

Lemmal .  Assume A C { a l a W > O } r  with some k X r  
matrix W having rank k. Let W =  (WW')  -1W. Then, for 
any z 

1 > (>) between vectors means > (>) between all components. 
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(i) 

3(z) l~ Z 0 (3.5) 

is sufficient for  (3.1) to hold. 
(ii) If, in addition, A = { a la W Z 0 } and W' Ig7 ~ 0,2 (3.5) is 
necessary and sufficient. 

Obviously, if W is a square matrix and of full rank, we 
have k = r ,  I ~ = ( W  1),, and W ' l g ' = / r > 0 .  

Proof  Note that lgzW'=Ig. For every z we have 
c ~ ( z ) a ' = 3 ( z ) F P W ' a ' = f ( z ) W ( a W ) ' .  (i) For every a E A  
a W > O  holds. So, from (3.5) we conclude 3(z)a '  > 0  for 
every a C A ;  hence (3.1). (ii) Let A = { a l a W > O }  and 
Wig'>0.  If (3.1) holds, we necessarily get 
3(z) E A *  = {TW'Iy > 0}, i.e., 3 (z)=  ? W' with some 7 > 0 .  
Therefore 3(z) W =  y W' lg '> 0, hence (3.5). QED 

with A. Parts (ii) to (v) of Corollary 1 are proved similarly. 
Note that in all these cases we have r = k and lg-= (W 1),; 
e.g., in (iv) 

W =  

1 0 . . .  0 

0 1 ... 0 

-1  -1  . . .  1 

, i f ' =  

1 0 

0 1 

0 0 

. . .  1 

�9 , .  1 

. . .  1 

QED. 

In part (i) of Corollary 1, A represents the case of null 
information on coefficients. In (ii) to (iv), A is determined 
by assessing inequalities of type (2.9); and in (v) by 
assessing those of types (2.9) or (2.12). Of course, the cases 
treated are examples only. In particular, we may combine 
inequalities as in the following example. 

Corol lary  1. Let the utility function be as in Theorem 1. 
When A is defined through inequalities as follows, then 
necessary and sufficient for  dominance of an alternative Y 
over an alternative X is that for  all zi 

(i) 3i(zi) > O, i = 1, ... k, holds, provided 

A = {alai > O, i = 1 . . . .  k}, 

J 
(ii) ~ c~i(zi) > O,j = 1 . . . .  k, holds, provided 

i--1 

A = {a[al  >_ 32 >_ . . .  ak >_ 0}, 

(iii) ~ as(zi) > O, j  = 1 . . . .  l, and 3i(zi) > O, 
i = l  i--l+l 

m = l + 1, ... k holds, provided 

A = {alal >_ a2_> ... al>_0, at+l >_ al+2> ... a k Z O }  

k 

(iv) ~ ,  3i(zi) > 0 and 3i(zi) > O, i = 1 . . . .  k -- 1, holds, 
i=1 

providedA = {alai > ak > O, i = 1, ... k - -  1}, 

(v) ~ 1 3i(zi) > O, j = 1, ... k, holds, provided 
i 1 Wi 

A - -  {a lw 1 a 1 ~ w2a  2 ~ . . .  Wka k ~ 0} where wl, w2,. . .  

wk are f ixed  positive weights�9 

Proof  Each a in the corollary denotes a conical linear 
information on coefficients A = { a l a W > O } .  In (i) we 
have W-- I; putting I~ = I in the lemma yields (3.1) if and only 
if 3 i ( Z i ) > 0 ,  for all i =  1 . . . .  k. Theorem 1 tells that Y 
dominates X with respect to the information 
A = { a E A l a i > O ,  i =  1, . . .k} if and only if for all zi (3.1) 
holds with el" instead of A. But, as A is dense in A, 
dominance with respect to A is equivalent to dominance 
with respect to A, and (3.1) w i t h / / i s  equivalent to (3.1) 

2 I.e., all components of the product matrix are > 0. 

Example  1 (k = 3, r = 4). 
Let A = {021, 32, a3) l a l  ~ {Z2 ~ 33 ~_~ 0, a 1 ~ 3 0~3}. Then 

W =  

1 0 0 1 

-1 1 0 0 

0 -1 1 -3 

, ; p = l  
_ _  ~ 

7 

7 7 7 0 

1 8 5 -1  

2 2 3 -2 

and (3.5) reads 

731(Z1) @ 32(Z2) Jr- 233(z3) > 0 

731(zl) + 832(Z2) @ 233(z3) > 0 

731(Zl) + 532(z2) + 333(z3) > 0 

- -  32(22) - -  233(23) > 0. 

Corollary 1 is in the spirit of Fishburn's (1964, 1965) 
"method of equating coefficients"; see also Kirkwood and 
Sarin (1985). There appears also a formal analogy of part 
of our approach to that of Pearman and Kmietowicz 
(1986). Our matrix Win Lemma 1 plays a similar role as 
their matrix M. However, the meanings are quite different: 
the latter paper is about LPI on probabilities while we 
focus on information about utility coefficients. 

For conical linear information, the polar cone can be 
computed according to the methods given in Mathies and 
Rubin (1980). However, solving the linear program (3.1) 
directly seems to be the more efficient procedure. 

4. Partial  information on a mult i l inear  uti l i ty  

This section addresses the case of general multilinear 
utility functions (2.1) including the multiplicative type 
(2.5). We start with a numerical example�9 Then, the 
subsequent theorem parallels that of Sec. 3. 

Example  2 (k = 3). 
Let u be a general multilinear utility function for three 

realvalued attributes, 
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U (X1, X2, X3) = 51 U 1 (X l) -~- 52 U 2 (X2) -Jr- 53 U 3 (X3) 

-7 512Ul(X1)H2(X2) -~- 513Ul(Xl)U3(X3) 

+ 523U2(X2)U3(X3) ~- 5123Ul(X1)U2(X2)U3(X3) 

and let some partial information on the coefficients of a 
standard multilinear decomposition of u be given by 

A --{(al ,  a2, a3, 512, a13, 523, 5123)]al, a2, a3 > 0; 

a12, 513,523 ~ 0; 5123 ~ 0}. 

We want to compare the following alternatives Y, X, and 
)~, each of which is capable of three possible three- 
attribute outcomes. 

at most twelve different choices of z in IR 3 where we have 
to check the sign of C~l(Zi), I C { 1,2, 3 }. When comparing J~ 
and Y, e.g., at z123 = (600,500,700) we get 
~123(Z123) = P ( Y ~ z 1 2 3 )  - - P ( ) ~  z 1 2 3 ) = 0 . 5 - - 0 . 7 5  < 0 ,  
whereas at z123 = (800, 900, 700) we get ~123(Z123)= 
0.5 -- 0.0 > 0; therefore with the set A given above neither 
Y dominates )~ nor viceversa. Further, it can be seen that 
no one of the three alternatives X, 2 ,  and Y dominates 
another one. Alternatively, if-/r={(ai)ic~l,2,3}lal, a2, 
a 3 > 0 ,  a12, a13, a23, a123 >0}  we get c~i(zi)>_O for all L 
This leads to dominance of Y over X. Further, 
dominates X with respect to A, but there is no dominance 
between Y and ~'. 

0.5 0.25 0.25 J 
Fr :  (800,900,700) (800,300,400) (400,900,400) 

[ 0 . 2 5  0.5 0.25 1 
Fx" (600,900,700) (400,300,400) (800,500,700) 

I 0.5 0.25 0 .25]  
F2: (600,900,700) (400, 300,400) (800, 500,700) 

Example 3 (k = 2). 
Assume that u 

A = {(51, 52, 512151 > 352 > 0, 
~ z =  ( W ' ) - I  ' 

w =  - 1 0 , if'= 
0 3 

With 

is multilinear with k = 2  and that 
al < 3 512 }. Then 

1 3 0 

0 1 0 

1/3 1 1/3 

Theorem2 (General multilinear case). Assume that the 
utility has standard multilinear decomposition with 
ui(ai) = 0, ui(bi) = 1 for two fixed outcomes  (al, ... ak) and 
(bl, .. . bk),further that the univariate utilities are increasing 
and the coefficient vector a = (al)o#ICK belongs to some 
given set A, a{i} > O for all i. With respect to this information 
an alternative Y dominates an alternative X if  and only i f  for 
all z 

 [075 0251 [05 05 1 
(6, 9) (4, 3) ' Fr :  (4, 9) (6, 3) 

we check c~x(zz) at z = (6, 9), (4, 9), (6, 3), and (4, 3). From 
Table 1 we see immediately that X dominates I1. Note that 
X stochastically dominates Y in each of its attributes. 

Table 1 

z (6, 9) (4, 9) (6, 3) (4, 3) 

dl (zl) 0.25 0.0 0.25 0.0 
c~2(z2) 0.25 0.25 0.0 0.0 
512(zi2) 0.75 0.25 0.25 0.0 

inf ~" ax61(zz) > 0 (4.1) 
aCA O#ICK 

where 

6z(zz) = e ( Y z  > z~) - e ( x z  >_ zz). (4.2) 

A proof  of Theorem 2 is found in the Appendix. Now let A 
be a set of coefficient vectors a with a t = 0  whenever 
III _> 2. Then, the utility function has an a priori additive 
decomposition, and (4.1) reduces to (3.1). Thus, The- 
orem 1 is a consequence of Theorem 2. 

Concerning conical linear information, Lemma 1 and 
its proof  carry over almost verbatim by letting a and 
5(z) be vectors in (2 k -  1)-space and assuming that 
rank W =  2 k -- 1. Here also negative signs of ai can occur 
when III > 2 .  We do not repeat the details. 

Instead of this we apply the modified lemma to 
Example 2: Here, W has format 7 X 7 with multiindexed 
rows and columns, W=(wH) where w i j = l  if 
I - - J E { 1 , 2 , 3 , 1 2 3 } ,  w u = - - i  if I = J E { 1 2 ,  13,23}, and 
wij=O else. Obviously ( W - l )  ' =  W -1 -- W, and (see the 
lemma) i f ' =  W. Thus the conditions on c~i(Zl) are sign 
conditions corresponding to those on ai  given in the 
information; di(zi) > (<)  0 whenever a I ~ ( ~ )  0. There are 

Now, the multiplicative case of utility decomposition is 
treated. As we know from the above, it is a special case of 
multilinear decomposition having less coefficients, viz. 
al, a2 . . . .  a~, and ft. Hence, Theorem 2 applies with an 
arbitrary information on these coefficients. Two import- 
ant examples of information on signs of coefficients are 
presented as a corollary of Theorem 2: 

Corollary 2 (Multiplicative case). I f  the utility function has 
a standard multiplicative decomposition with increasing 
univariate utilities and the coefficients are restricted as 
follows, then an alternative Y dominates an alternative X if  
and only i f  for every z 

(i) P( Y > z) -- P(X > z) > 0 holds, provided that ai > O for 
i =  1, 2, ... k and fl > O, 

(ii) P ( Y  < z) -- P(X < z) < 0 holds,provided that ai > O for 
i =  1,2 . . . .  k a n d f l < O .  
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In order to derive this corollary from Theorem 2, 
recall that for a multiplicative utility decomposition 

C~I = fl Ill-- 1 ] ' - I  a i  holds. The details of proof are omitted. 
i C I  

For Corollary 2 and related results see Mosler (1984) 
and Scarsini (1988). Other conical linear information on 
coefficients of multilinear utility decompositions which 
involves notions of multiattribute risk posture is discussed 
in Mosler (1987). The multiplicative case with known 
univariate utilities is treated in Hazen (1986). 

5. Conclusions 

When a multilinear utility function is only known to have 
increasing univariate utilities and scaling coefficients in 
some given set, conditions have been derived for an 
alternative to dominate another one. The general multili- 
near form of an utility function includes the additive and 
multiplicative cases, and the arbitrary information on 
scaling coefficients includes linear partial information 
(LPI) and conical LPI. LPI and conical LPI are easily 
assessed by standard procedures. In a number of import- 
ant cases of LPI, closed form results of the conditions have 
been derived. 

The findings of Hazen (1986) and previous authors 
have been modified and extended in several respects: 
instead of known univariate utilities we have employed 
unknown increasing ones, and instead of additive/multi- 
plicative utilities we have considered general multilinear 
ones. Further, we have introduced a much more general 
prior information about the scaling coefficients. 

We close this paper with some remarks on decision 
methodology. As a procedure for practical decision 
making, the above approach needs the following kinds of 
information (besides the list of alternatives): First, some 
information on utility independence of attributes (or on 
similar properties of the preference) which is standard in 
multiattribute decision methodology and allows for a 
proper multilinear, multiplicative or additive decompo- 
sition, see e.g., Keeney and Raiffa (1976). Second, the 
information that the univariate utilities are increasing 
(after an appropriate reordering of attribute levels). 
Third, after having fixed two outcomes a and b, some 
partial information on the coefficients; this information 
may be general, linear, or conical linear. 

The procedure consists of several steps: (1) Assess 
alternatives, their possible outcomes, and the probabili- 
ties of their possible outcomes. (2) Assess utility indepen- 
dence properties and decompose the utility function; see 
Keeney and Raiffa (1976). (3) Assess increasingness of 
univariate utilities. (4) Fix outcomes a and b, and assess 
partial information on coefficients. (5) Check pairs of 
alternatives for dominance (by use of the results on 
conical linear information or by solving the program 
directly). Remove inefficient alternatives (by use of some 
partial ranking algorithm as given, e.g., in Kirkwood and 
Sarin 1985, or Bawa et al. 1979). 

The computational feasibility, of course, depends on 
the number of attributes k and the number of possible 

levels of attributes. However, in view of the standard 
MAUT applications (k < 4), the limitations of our ap- 
proach are not computational ones, but rather the usual 
limitations of MAUT: knowing all alternatives, outcomes, 
attributes, probabilities, assuming the expected utility 
hypothesis, and assessing utility independence. 

A final remark, concerning the practicability of the 
approach, viz. the sizes of the efficient sets resulting from 
given partial information: There is considerable empirical 
evidence in the literature that in many practical situations 
the ranking of alternatives does not depend heavily on the 
specific coefficients used in an additive utility function; see 
Schoemaker and Waid (1982) and the references therein. 
If this is also the case with a multilinear utility function 
(which has still to be investigated), applying our pro- 
cedure to these situations will be likely to result in 
relatively small efficient sets. 

Appendix 

Proof of  Theorem 2. Necessity: Let z E C = C1X.. .  Ck and 
a E A. We show that (4.1) is tantamount to (2.7) with some 
particular u -- Wz having a standard multilinear decompo- 
sition 

Wz(X)= ~ ,  aj l--[ l[zi,~[ (xi)' (A.1) 
J C K  i E J  

where ls denotes the indicator function of a set S, defined 
by ls(~) = 1 if ~ @ S, ls(r = 0 if ~ q) S. The above product 
over J is unity if and only if xi > zi for every i E J, else the 

product vanishes. Hence, E w z ( X ) =  ~_, a j P ( X j >  zj) 
J Q K  

holds, and the same for Ewz(Y). If all z i>ci  (where ci 
denotes the lower boundary of C/), the decomposition 
(A. 1) is standard multilinear with bi = zi and with some 
ai < zi, a E A. Therefore, if Y dominates X with respect to 
A it follows that Ewz(X)<Ewz(Y) ;  hence (4.1). If zi = ci 
for some i, the decomposition is not standard multilinear. 
However, Wz is the pointwise dominated limit of such 
decompositions and by Lebesgue's convergence theorem 
we again conclude E w z ( X ) < E w z ( f )  and (4.1). Suf- 
ficiency: Let u have a standard multilinear decomposition 
with a EA and assume first that all u/are right continuous. 
Since ui is increasing, 0 = u(ai) < ui(xi) < ui(bi) = 1, we 
may define a probability measure/li, I~i([ai, xi]) = ui(xi), 
on Ci, i EK.  Let/J =/~1 | be the product measure on 
C. Then for any / ,  

I-I  ui(xi) =/~({z E Clzi < xi, i E i}) 
i E I  

= S xi(z,  xl)d (z) 
C 

where 

1 if xi > zz 
gi(z, xi) = 0 else 
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Then 

Egi(z, i"I) = e ( x i  ~ zi), 

ICK \ i@I 

, IE I g (z, Xl) Z 
L c 

= f 2 azEgI(z, Xz)dll(Z) 
c 

= f Z ~ ~ zI)d[A(z). 
c 

Similar ly,  

Eu(Y)  = f • alP(YI > zi)d/l(z). 
c 

Therefore ,  f rom (4.1) we conc lude  E u ( Y ) - - E u ( X ) > O .  
This proves  the t heo rem for  r ight  con t inuous  ui. If  some ui 
are not  r ight  con t inuous ,  they m a y  be a p p r o x i m a t e d  in a 
s t a n d a r d  way  by  r ight  con t inuous  u[s to yield aga in  
Eu(Y)  -- Eu(X) > O. Q E D  
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