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The classical point estimation problem is investigated under alternative loss 
functions which are quasi-convex and symmetric with respect to some subgroup of 
the orthogonal group in W. A characterization of better estimators is proved and 
applied to scale and translation families of estimators. Finally, it is shown that 
every minimum variance unbiased normal estimator is best unbiased under 
arbitrary loss being quasi-convex and symmetric about the origin. *(T’ 1987 Academic 

Press. Inc. 

1. INTRODUCTION AND NOTATION 

Consider a parametric estimation problem consisting of a triplet 
(X, 28, P,), 9 E 8 c R” and a function g: 8 + Q c US”. We are interested in 
an estimator t of g(S), t: X -+ Q element of some set of estimators D, which 
for given 9 minimizes the risk 

NL 9, f) = 1 L(G) -g(9)) dP,g(.x) 

= E,9Uf(X) -g(9)), 

where L: R” + R, denotes a loss function and X is the observed random 
variable. t* is said to be better than t at 9, f, I* ED, if both risks exist and 
are finite, and 

R(L, 9, t*) < R(L, 9, t). 

For example, let L be a quadratic error loss, i.e., 

L(Y) =YTAYt YER”, 
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with some positive definite n x n matrix A. When t*(X) and t(X) have finite 
second moments and E9t*(X)=Est(X), it is well known that (1.1) holds 
for all loss functions of type (1.2) if and only if COV,~~(X) - Cov,t*(X) is a 
positive semi-definite matrix. 

However, from a decision-theoretic point of view, quadratic error loss 
(or, equivalently, variance) seems to be a very special device; moreover, 
second moments of the estimators may not exist. The question whether a 
given estimator, being best in some class D under quadratic loss, is also 
best under certain alternative loss functions has been posed early; see, e.g., 
Blackwell and Girshick [2, p. 1111. Answers have been obtained mainly in 
the case of a convex loss function: Padmanabhan [S] has shown that a 
bounded univariate estimator which is uniformly best unbiased (UBUE) 
under quadratic loss is also UBUE under symmetric convex loss; for 
related results see Schmetterer [6]. Nather [4] has characterized 
robustness properties of univariate estimators against quasi-convex loss 
and of multivariate normal estimators against arbitrary convex loss, while 
Bamberg and Rauhut [l] provided counterexamples in the non-normal 
multivariate case. 

For any convex loss function, the marginal loss of error is increasing. By 
this, loss functions like bounded absolute error loss (e.g., L(y) = 0 if 
llyl/ < /I, L(y) = 1 else) are ruled out. In this paper we investigate loss 
functions of a more general type (where the marginal loss can be arbitrarily 
chosen), namely loss functions which are quasi-convex and symmetric with 
respect to some groups of L-measure preserving transformations of iw”. 

A loss function L: R” + R + is quasi-convex if for all y, z E [w” and 
/jE IO, lC> 

L(Py+(l-P)z)<L(y) v L(z), 

or, equivalently, for all a E Iw + the sets H(L, a) = ( y E R” 1 L(y) d a) are 
convex. Obviously, every convex loss, hence every quadratic loss, is quasi- 
convex. Let 0 denote the group of orthogonal transformations in Iw”, and 
Y some subgroup of 0, A set Kc Iw” is Y-invariant if y E K, $ E 93 implies 
$(y) E K. L is called g-invariant if 

U$f(Y)) = L(Y) 

holds for all ye [w” and II/ E 9, or, equivalently, the sets H(L, cc) are 
%-invariant for all c1 E [w + . 

In the sequel we consider loss functions L with 

(i) L quasi-convex 

(ii) L Y-invariant, and 

(iii) L(o) = 0. 
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The class of those losses is denoted by Q(G); the class of all Y-invariant 
convex sets which contain the origin is denoted by S(y). Thus, we can 
write 

Q(~)={L:R"+R+~H(L,~)ES(~),~~ER+}. (1.3) 

To illustrate the definitions consider the group 9, = {id, -id} consisting 
of the identity transformation and its negative: any quadratic loss is in 
Q(4). The extremes are marked by g0 = {id} and the full group 0; Q(%,,) is 
the class of all quasi-convex losses with i&mum equal to zero at the origin 
while Q(o) consists of all L of type 

L(Y)=4IlYll) 

with arbitrary non-decreasing I: R + -+ [w + , 1(O) = 0. 

(1.4) 

In Theorem 1 of Section 2 we characterize (1.1) for all L E Q(s) by a 
probability inequality on the sets in S(Y); in Theorem 2 the result is 
specialized to the groups 0 and ?&. Three corollaries treat the cases when 
the distributions of t*(X) and t(X) differ by a %-transformation, a scale 
vector, a translation vector, and a convolution, respectively. Finally, in Sec- 
tion 3 it is shown that every minimum variance unbiased normal estimator 
is best under arbitrary quasi-convex loss L with L(y) = L( -y), y E KY’. 

2. COMPARISON OF ESTIMATORS WHEN LEQ(~) 

Let BcB be given, QEtI and t, FED. 

THEOREM 1. (1.1) holds for all LE Q(9) both risks of which arefinite if 
and only if for all B E S(3), 

P,(t*(W -g(9) E B) > P,(U) - g(W E B). (2.1) 

Proof. Let /J denote the probability distribution of Y = t(X) -g(9) at 9, 
and let v denote the distribution of 2 = t*(X) -g(9) at 9. 

With these notations, 

R(L, 8, t) - R(L, 9, t*) = j- L dp - f L dv 

= s ca Cps(z~ ML 8) - Ps( YE H(L 0111 4% -03 
(2.2) 

where I-W, 8) = { y E R” 1 L(y) G 8). 
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Assume (2.1) for all BE S(9); let L E Q(‘9’) be given, hence 
H(L, fl)~S(‘??) for all /I. We conclude from (2.2) R(L, 9, t) - 
R(L, 9, t*)>O, i.e., (1.1). On the other hand, assume (1.1) for all LE Q(Y), 
and let BE S(9) be given; then, the indicator function 1, is in -Q(9): 
O<R(l.,&t*)-R(~.,$,~)=P,JZEB)-PJYEB). Q.E.D. 

From Theorem 1 we follow three corollaries, the first of which states that 
the risk remains constant under a %-transformation of the estimator and 
that the risk is isotone in the scale parameter when the estimators are from 
a scale parameter family; here, 0 denotes componentwise multiplication of 
vectors in R”. Let LE Q(Y) be given, and assume that both risks 
R(L, 9, t*) and R(L, 9, t) are finite. 

COROLLARY 1. (i) Zf t(X)-g(9) is distributed as $(t*(X) -g(9)) at 9 
for some tj E 99 then R(L, 9, t*) = R(L, 9, t). 

(ii) Zf t(X)-g(9) is distributed as ao(t*(X)-g(S)) at 9 for some 
aE IF’, a,> 1 for all i, then R(L, 9, t*) 6 R(L, 9, t). 

Proof: Part (i) is obvious from Ic/ ’ (B) = B, B E S(9). As every B E S( $9) 
is convex and contains the origin we have (l/a, ,..., l/a,)To Bc B, hence 
(2.1); and part (ii) follows from Theorem 1. 

COROLLARY 2. Let f,p be a %-invariant probability density in Iw” with 
{ y I f,(y) > a} convex for every a E K Assume that for every s E {t, t*}, s(X) 
has a density y t-+ fg( y -g(9) + w,) at 9 with some translation parameter w,. 
Then ( 1.1) holds if w,. E conv { $( w,) I$ E 9 ), where conv denotes the convex 
hull. 

Proof For arbitrary BE S(Y) we have to show (2.1), which is 
equivalent to 

(2.3) 

Under the assumptions of the corollary, (2.3) holds by a result of 
Mudholkar [3]. 

In Corollary 2 the assumptions sufficient for ( 1.1) may be reworded as 
follows: t*(X)-g(9) and t(X)-g(9) belong to a translation family with 
translation parameters w,. and w,; they have unimodular densities, and w,. 
is in the convex hull of the g-orbit of w,. Especially, when Q = 4, the last 
condition becomes wI.=pw, for some BE R, Ifi1 < 1, since conv{$(w,)l 
ICI~%~=~Bwrl~~C-l~ 111. 

COROLLARY 3. Assume $9, c 9, and that the distribution t*P, of t*(X) at 
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9 has a density y wfg( y - g( 9)), andf$ is as in Corollary 2. Then (1.1) holds 
if the distribution tP, of t(X) equals the convolution 

tP, = t*P,g * 1 (2.4) 

with some probability measure ;i on R”. 

Proof: Let v denote the distribution of t*(X) -g(9); and let BE S(3) be 
given, ZEUY. From 9r,c% follows oEconv{t&z)l+E%j; hence, when 
setting w,. = 0 and w, = -2 in Corollary 2 the premises of that corollary 
are met. Then, (2.3) yields the inequality 

v(B-z)=[ fdl.z)dy</ .M:p(y)dy==v(W. 
B B 

It follows, by (2.4), that 

tP,(B+g(9))=(v*i)(B)=jv(B-z)i(dz) 

< v(B);l(dz)=~(B)=t*P,~(B+g(S)), s 

hence (2.1). 

We conclude the section by specializing Theorem 1 to the groups 0 and 
9&. Recall that 

Q(o)={LIL(y)=f(Ilyll),y~[W”,l:iW+~[W+isotone,1(0)=0}, 

Q(9,,) = (L 1 L quasi-convex, L(o) = O}. 

THEOREM 2. (i) (1.1) holds for all LEQ(O) both risks of which are 
finite if and only $ 

F,*>F,, (2.5) 

where F$ and Fg denote the distribution functions of IIt* -g(g)11 and 
II t(X) - g(g)11 at 9, respectively. 

(ii) (1.1) holds for all L E Q(%) both risks of which are finite zf and 
only if (2.1) for all convex B which contain the origin. 

Proof: Note that 

S(%,)={BIBconvex,o~B}, 

S(0) = {B I B open or closed ball around o}, 
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hence (ii) is obvious. For any closed ball BE S(0) with radius p, (2.1) 
means 

47(P) = PdIlt*(W -g(S)11 d p) 

2 PsOIt(X) - d9)ll d P) = F,(p). 

Therefore, (2.5) iff (2.1) for all closed B E S(B). As any open ball is a coun- 
table intersection of closed balls, (2.5) iff (2.1) for all BE S(0). 

3. APPLICATION TO UNBIASED NORMAL ESTIMATORS 

The results of Section 2 apply to a variety of distributions of known 
estimators. Here, we restrict ourselves to a first and most important 
application to normally distributed unbiased estimators. 

THEOREM 3. Let 9 E 0 he given, and assume that for any t E D t(X) is 
unbiased for g(9) and normally distributed at 9. If t* is minimum variance in 
D at 9 then t* is best in D at 9 under any loss function which is quasi-convex 
and symmetric about the origin and yields finite risks. 

Proof Let t E D, and denote the covariance of tP, by T, the covariance 
of t*P$ by S. Then by assumption T-S is positive semi-definite, thus 
tP,9 = t*P,9 * 1, where 1 is a normal distribution with zero mean and 
covariance T- S. Corollary 3 yields the proposition for any loss L E Q(4), 
i.e., L quasi-convex and symmetric about o E R”, as the centralized normal 
density is unimodal and $-invariant. Q.E.D. 

An analogous theorem with convex (not necessarily symmetric) loss 
functions has been proved by Nlther [4]. We give an application of 
Theorem 3: 

Consider the general linear model with normal errors 

x=cp+u, u - N(0, a2S,), 

where the n x p design matrix C has rank p, and S, is positive definite and 
known. The usual least-squares estimator is uniformly best linear unbiased 
not only in terms of minimum variance (by the Gauss-Markov theorem) 
but also (by Theorem 3) with respect to an arbitrary quasi-convex loss 
which is symmetric about the origin and yields finite risks. 
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